

ENERGY EVALUATION EUROPE CONFERENCE 2025

SHOW ME THE EVIDENCE: EVALUATION AS THE DECISION MAKER'S BEST RESOURCE

25 SEP - 26 SEP 2025 BERLIN

Integrating multiple impacts and lifecycle assessment in the evaluation of energy efficiency funding programs

Author: Marcos Tenente

PhD Candidate in Sustainable Energy Systems (SSE) at the University of Coimbra Supervisors: Ph.D. Álvaro Gomes, Ph.D. Carla Henriques and Ph.D. Patrícia Pereira da Silva

When we evaluate energy efficiency, are we truly capturing its full value?

NO!

But we can make it possible.

WHY THIS TOPIC MATTERS?

Residential sector

- EU Building stock
 - 40% of energy consumption
 - 36% of GHG emissions
 - 75% inefficient
 - 85% in use in 2050
- Portuguese building stock is mainly composed by residential buildings
 - Accounts for more than 30% of final energy consumption
 - Two-thirds built before 1990
 - Low energy performance
 - Reduced thermal comfort
 - Increased energy consumption, emissions and energy poverty

WHY THIS TOPIC MATTERS?

The Current Challenge

- EE is a crucial energy resource.
- O However there remains a persistent EE gap attributed to :
 - Financial (e.g. High upfront costs and lack of access to funding)
 - O Social (e.g. Lack of public awareness or resistance and skepticism)
 - Institutional (e.g. Complex application procedures or misaligned policy objectives)
 - Technical Barriers (e.g. Shortage of skilled labor or insufficient support)
 - Traditional EE evaluations (assess operational energy and GHG savings, often omitting key lifecycle impacts and benefits).

Outcome:

- Sub-Optimal Decisions: Risk of funding projects with limited overall value
- O Undervaluation of long-term societal and environmental benefits (e.g. Economic growth, job creation, poverty alleviation or reduction of emissions)
- Renovation rate is only 1-1.5%/year—well below the 2% target.
- Residential sector is **not on track** to achieve full decarbonization

SOLUTION

Objective

- Integrate Hybrid Input-Output Lifecycle Assessment (HIO-LCA) +
 Portuguese Energy Consumption Efficiency Promotion Plan (PPEC)
- Relevance:
 - Extends cost-benefit evaluations to capture upstream and systemic socio-economic and environmental effects of EE measures
 - Refine PPEC evaluation system
 - Improves decision-making and provides a more accurate reflection of EE investments' long-term value
 - Increase attractiveness of EE measures
 - Shape broader national and EU-level energy policy agendas

METHODOLOGY

Overview

Inputs from PPEC -Operation phase

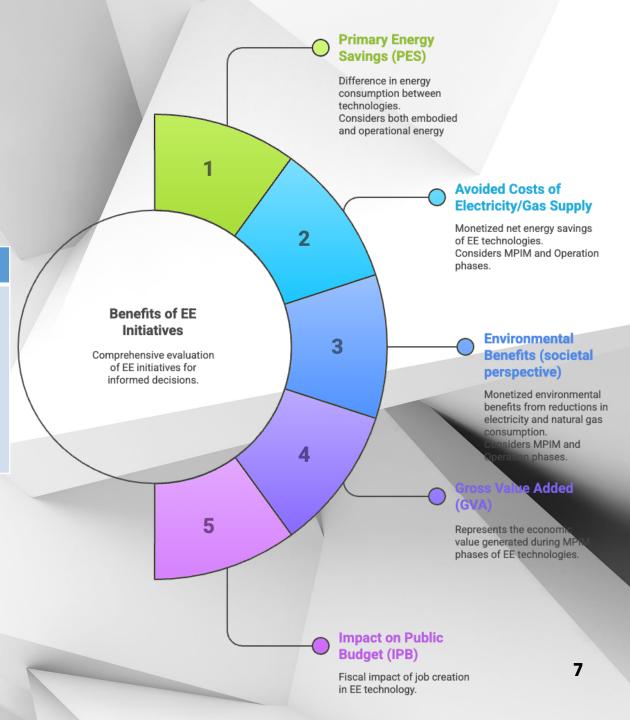
- Technology costs: installation, removal & disposal, administrative and transaction
- Energy consumption
- Avoided costs of electricity or gas supply

Inputs from HIO-LCA model - MPIM phases

- Gross Value Added (GVA)
- Employment impact
- Embodied energy
- Embodied GHG emissions

Refined PPEC evaluation framework

- Integrated inputs:
 Operation and MPIM phases:
- Costs: Technology costs
- •Benefits:
- Avoided energy supply costs, GHG emissions savings, GVA and Impact on Public Budget (IPB)
- •Evaluation tools:
- ·Feasibility tests:
- PES
- Societal test
- ·Merit-based ranking:
- Benefit-Cost Ratio (BCR)
- Policy alignment


New Ranking

- Benchmark results:
- Standard vs Refined methodology

CASE STUDY

Measures and Benefits

Nomenclature	Measure	Sector	
IBD_TR1	Heat Pump + PV		
IBD_TR2	DHW Heat Pump + PV		
PORTGAS_TR1	Efficient Water Heaters	Residential	
GOLDENERGY_TR1	Smart Thermostats		
LISGDL_TR1	Condensing Boilers		

KEY RESULTS

Operational & MPIM impacts

Operational Impacts (PPEC)							
		Cos	ts	Ben	Benefits		
••	PES	PPEC	Social	Environmental benefits from	Avoided costs of electricity or		
Measures		FFLO	Social	a societal perspective	gas supply		
	Toe/year	(€)	(€)	(€)	(€)		
IBD_TR1	43.72	112,344	334,798	19,287	488,107		
IBD_TR2	13.55	41,098	157,601	5,803	152,227		
PORTGAS_TR1	159.28	685,125	940,000	129,026	825,699		
GOLDENERGY_TR1	41.18	104,545	150,560	33,360	330,132		
LISGDL_TR1	254.26	799,433	1,279,609	205,965	1,318,074		

MPIM impacts (HIO-LCA)							
GVA M easures €	GVA	Employment	Impact on public budget	Embodied GHG emissions		Embodied energy	
	€	N⁰ of jobs	€	Tons of CO2eq	€	Toe	€
IBD_TR1	34,315.47	0.96	5,570.26	23.67	299.77	7.06	4,597.31
IBD_TR2	16,740.14	0.50	3,542.66	8.56	127.40	2.93	1,868.94
PORTGAS_TR1	362,279.42	10.25	51,686.85	310.19	3,577.04	82.96	87,754.63
GOLDENERGY_TR1	35,180.37	1.16	4,411.62	14.62	224.87	5.03	3,015.95
LISGDL_TR1	282,300.88	7.75	49,651.49	206.83	2,566.60	57.90	65,258.57

KEY RESULTS

Conventional vs New

Measures	Old BCR	New BCR	Old PES (toe)	New PES (toe)	Old NPV (€)	New NPV (€)
IBD_TR1	4.52	4.83	874.4	867	172,595	207,584
IBD_TR2	3.85	4.29	271	268	428	18,715
PORTGAS_TR1	1.39	1.86	1,911.36	1,828	14,724	337,360
GOLDENERGY_TR1	3.48	3.82	494.16	489	212,932	249,283
LISGDL_TR1	1.91	2.24	3,051.12	2,993	244,430.3	508,557

Measures	ERSE – Old score	ERSE - New score	DGEG score	PPEC - Old score	PPEC - New score	Old ranking	New ranking
IBD_TR1	98.53	98.53	84.00	91.27	91.27	1°	1º
IBD_TR2	83.59	85.07	84.00	83.80	84.54	2°	2°
PORTGAS_TR1	45.43	49.14	79.00	62.21	64.07	3°	4°
GOLDENERGY_TR1	59.32	69.27	64.00	61.66	66.64	4 °	3°
LISGDL_TR1	52.98	54.83	64.00	58.49	59.42	5°	5°

CONCLUSIONS

Key Takeaways

- EE remains a top EU priority for the cost-effective meeting of energy and environmental goals.
- Conventional evaluations undervalue EE measures
- Study introduces an enhanced methodology:
 - Integrating multiple benefits changes cost-effectiveness and rankings
 - Overs additional life cycle phases beyond operational
 - Assess national impacts and ensures scalability
 - Provides robust, equitable, transparent basis for funding decisions
 - Establishes HIO-LCA as a valuable instrument to enhance the evaluation mechanisms of EE funding programs

CONCLUSIONS

Future Work

- Extend analysis to cover industry and agriculture
- Integrate end-of-life impacts
- Consider other impacts
- Extend the application to other programs promoting EE
 - E.g., Portuguese Environmental Fund could be enhanced with this comprehensive approach

Thank you!

Any questions?

You can find me at marcos.tenente@inescc.pt

Acknowledgments

This research was funded by the Portuguese Foundation for Science and Technology (FCT) through the doctoral grant SFRH/BD/151353/2021 (DOI: 10.54499/SFRH/BD/151353/2021), supported by the European Social Fund under the PORTUGAL2020 framework and the Demography, Qualifications, and Inclusion Program (Pessoas 2030), via the Regional Operational Program of the Center (Centro 2020), and within the scope of the MIT Portugal Program. Additional funding was provided through the FCT Pluriannual Funding UID/308: Institute for Systems and Computer Engineering at Coimbra – INESC Coimbra and UID/5037: Centre for Business and Economics Research – CeBER, as well as by the European Union under the Horizon Europe framework program (Grant Agreement ID: 101075582). This work is also co-funded by the European Regional Development Fund (FEDER) and national funds through FCT, under the project COMPETE2030-FEDER-00888800, operation no. 15224.

PORTUGUESE ENERGY CONSUMPTION EFFICIENCY PROMOTION PLAN - PPEC

- Scope:
 - Tangible measures (e.g., efficient equipment)
 - O Residential, commercial & services, and industrial & agricultural sectors.
 - Intangible measures (e.g., awareness campaigns)
- Evaluation Criteria for Funding Tangible measures
 - PES Test: Reduction in primary energy use (toe).
 - O Social Test: NPV of societal benefits and total costs of EE measure.

- Ranking System (100 Points Total):
 - ERSE (Economic Assessment) 50%:
 - BCR tests (75 points):
 - Societal benefits Avoided costs of electricity or gas supply, GHG emissions, impacts on public health, resource-use
 impacts, and investments in infrastructure.
 - O PPEC costs Installation, removal and disposal of the replaced equipment, administrative and transaction costs.
 - Share of equipment investment in total measure cost (25 points)
 - DGEG (national relevance, policy alignment, and program coordination) 50%

HYBRID INPUT-OUTPUT LIFECYCLE ASSESSMENT - HIO-LCA

- HIO-LCA integrates conventional LCA with IO models
- Key stages in HIO-LCA:
 - 1. System Boundary Definition
 - Define reference and EE technologies.
 - Selection of LC phases
 - Manufacturing, Packaging, Installation and Maintenance (MPIM)
 - 2. Cost estimation
 - Investment, installation, and maintenance costs
 - 3. Domestic output calculation
 - EE-related expenditures are disaggregated into components and activities across MPIM phases
 - 4. Assess direct & indirect effects

Economic:

- GVA

Employment

Environmental:

GHG emissions