# Increasing the use of national statistics data for monitoring energy efficiency in The Netherlands

Joost Gerdes (TNO), Sebastiaan Mantel (CBS)



#### ENERGY EVALUATION EUROPE CONFERENCE 2025

SHOW ME THE EVIDENCE: EVALUATION AS THE DECISION MAKER'S BEST RESOURCE

25 SEP - 26 SEP 2025





# Why are energy saving and efficiency important?



- Using less energy helps attain policy goals for emission reduction and share of renewables
- Lowers energy dependency and costs
- Reduces practical barriers of the energy transition like infrastructure limitations, public resistance
- IEA: multiple benefits of energy efficiency: less energy poverty, less air pollution good for health etc.
- European Commission: energy efficiency first
- Energy saving policies are underutilised, the national monitor may help



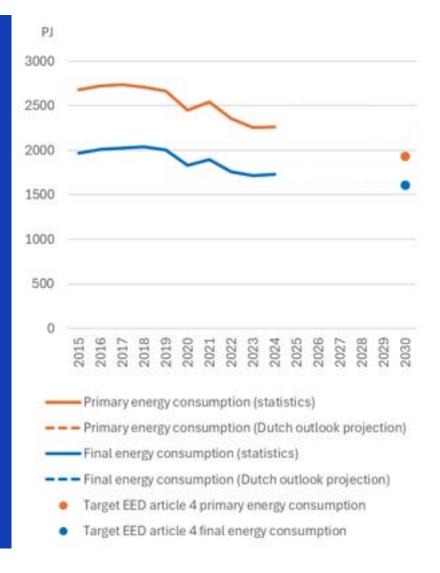
### **Contents**



- 1. Reasons for a national efficiency monitor
- 2. Introduction
- 3. Goals of the monitor
- 4. Methodology
- 5. International context
- 6. Results
- 7. Conclusion and discussion



# Reasons for a Dutch national efficiency monitor


EU Energy Efficiency Directive (EED) article 4 targets,

realisations and

Dutch Climate and Energy Outlook projections

for primary and final energy consumption in the Netherlands

Results available earlier than at Eurostat



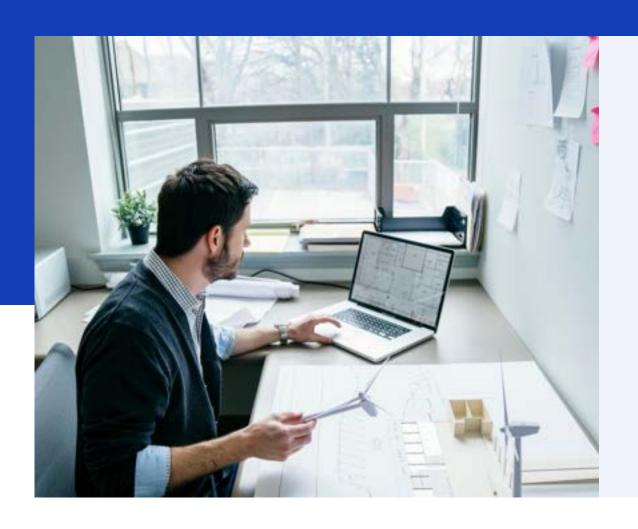


# Reasons for a Dutch national efficiency monitor

EU Energy Efficiency Directive (EED) article 4 targets,

realisations and

Dutch Climate and Energy Outlook projections


for primary and final energy consumption in the Netherlands

Results available earlier than at Eurostat





#### Introduction



#### Motives and considerations:

- Increased interest of Dutch government in energy consumption and efficiency
- Partly because of EED article 4 goals
- National sector definitions
- Detailed monitoring of final energy efficiency already done by Odyssee-Mure and IEA...
- ... but some energy conversion efficiencies not covered
- Odyssee-Mure and IEA use lower quality data for some activities due to lack of official data
- This concerns mostly data on physical production and activities, but also some detailed energy consumption data



#### Goals

- Improve official data availability by involving Statistics Netherlands CBS
  - (Only CBS can determine EED article 4 energy consumption on the sector level for the Dutch sector definitions)
- Insight in the main developments behind primary and final energy consumption
- Developing definitions of energy efficiency indicators for use within the national and international context

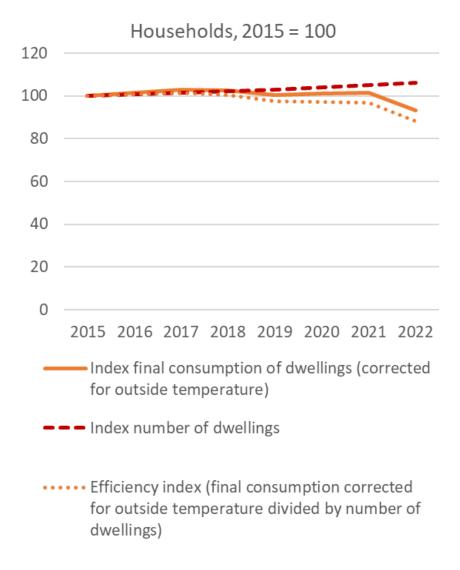




# Methodology 1/3

- Sector definitions of the Dutch Climate Agreement, convenient for policymakers
- Industry includes refineries, production of oil and gas, coke ovens and blast furnaces
- Conversion losses of autoproducer CHP are allocated to end use sectors
- Energy use by mobile machinery is allocated to transport
- Energy data exclusively from CBS, consistent with Eurostat data for calculation of EED article 4 goals
- Aviation bunkers are not part of the Dutch Climate Agreement, but within scope of EED

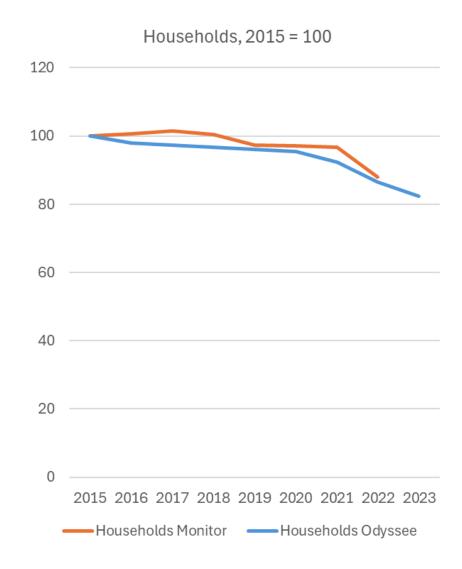
#### **EED definitions**


#### Sector definitions Dutch Climate Agreement

| Primary | Final | Consumption<br>type                                                  | Power and<br>Heat            | Industry                     | Built<br>Environment     | Transport                                | Agriculture              |
|---------|-------|----------------------------------------------------------------------|------------------------------|------------------------------|--------------------------|------------------------------------------|--------------------------|
|         |       | transforma-<br>tion losses,<br>own use                               | main activity<br>electricity | other<br>transforma-<br>tion |                          |                                          |                          |
|         |       | transforma-<br>tion losses of<br>electricity<br>and sold CHP<br>heat | main activity<br>CHP         | auto-<br>producer<br>CHP     | auto-<br>producer<br>CHP |                                          | auto-<br>producer<br>CHP |
|         |       | transforma-<br>tion losses of<br>own use of<br>CHP heat              |                              | auto-<br>producer<br>CHP     | auto-<br>producer<br>CHP |                                          | auto-<br>producer<br>CHP |
|         |       | final consumption                                                    |                              | final use                    | final use                | final use                                | final use                |
|         |       | final<br>consumption<br>mobile<br>machinery                          |                              | final MM                     | final MM                 |                                          | final MM                 |
|         |       | bunker fuels                                                         |                              |                              |                          | Aviation<br>bunkers<br>Marine<br>bunkers |                          |
|         |       | non-<br>energetic                                                    |                              |                              |                          |                                          |                          |



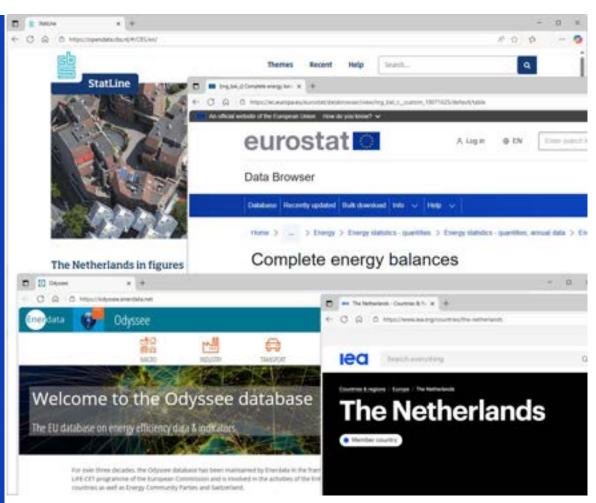
# Methodology 2/3


- Efficiency indices used: primary and final energy consumption divided by levels of dominant activities
- Base year is 2015
- Efficiency indicators on the sector level for relatively homogeneous sectors (Power, Households, Services, Agriculture (dominated by horticulture)
- Industry is largely covered by efficiency indices for refineries, chemical industry, steel industry
- Transport is largely covered by efficiency indices for cars, trucks, light vehicles, air traffic
- No sector level efficiency indices for industry and transport, nor primary and final ones on the national level





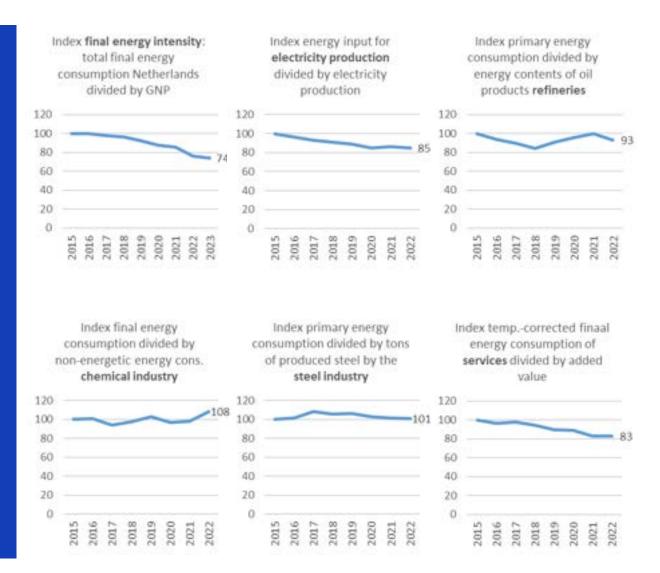
## Methodology 3/3


- Less detailed than Odyssee-Mure and IEA; structural effects not taken into account
- No 3-year averaging
- Example: for households, total energy consumption is divided by the number of households, without taking changes in heating systems or appliance ownership into account
- This is deliberate, as we do not aim to replicate the level of detail in Odyssee-Mure
- This also means less efficiency gains than in Odyssee-Mure if consumption-increasing structural effects have occurred





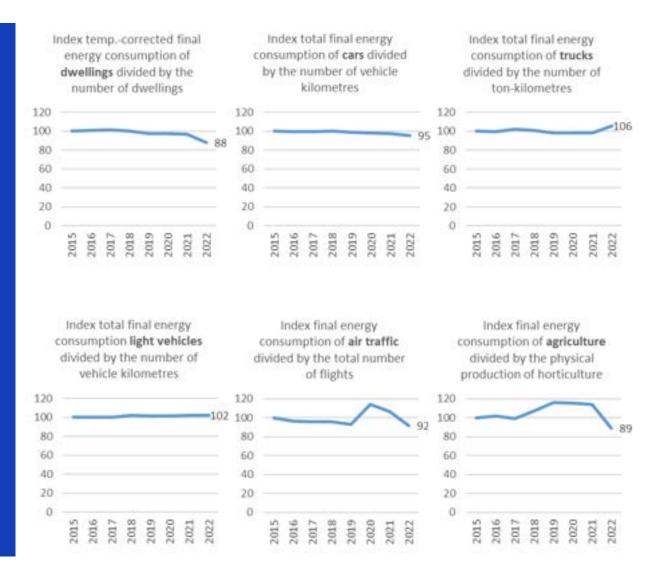
#### International context


- Definition of indicators aligned to match the national and, if possible, international context
- This makes indicators consistent between different energy efficiency reporting obligations
- Most important example: allocation of CHP input energy to electricity and heat





# Results 1/2


 With the methodology used, only the power and services sectors show convincing trends towards higher efficiency compared to 2015





# Results 2/2

- The relatively low index values for residential and agriculture are outliers related to high energy prices in 2022
- A secondary result is the awareness of necessary data that are not (yet) directly available from CBS






#### **Conclusion and Discussion 1/2**



- Some activity data for Odyssee-Mure are collected by TNO from other sources
- Awareness of missing time series helps getting activity data higher on agenda of national statistics offices and decision makers
- Maximum CBS data availability would improve consistency between databases and monitoring methodologies (by IEA, Odyssee-Mure and the annual Dutch Climate and Energy Outlook)



#### Conclusion and Discussion 2/2



#### Important features of the monitor:

- Insight in the main trends underlying energy consumption
- Efficiency developments matching the Dutch sector definitions

It can help shape sectoral policies to reach the EED article 4 targets

#### Improvements to the monitor may include

- Averaging over multiple years to smoothen statistical noise
- Constructing efficiency indices on the sector level for all sectors
- Primary and final efficiency indices on the national level

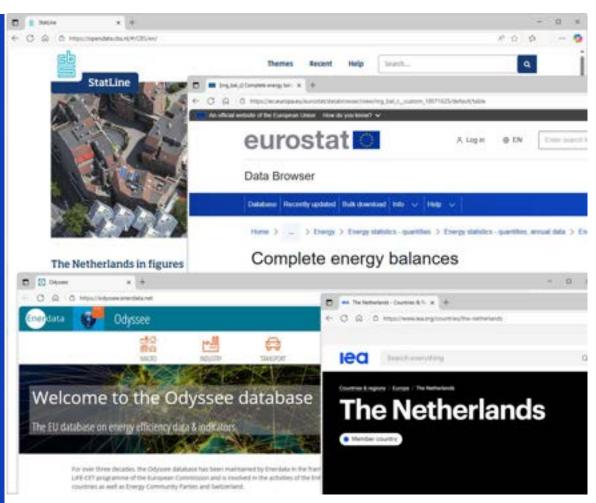




#### **Questions and discussion**

What is the data availability situation in your country?

Link to extended abstract to appear on <a href="https://energy-evaluation.org/resources">https://energy-evaluation.org/resources</a>


Monitor energy saving: <a href="https://energy.nl/publications/monitor-energiebesparing/">https://energy.nl/publications/monitor-energiebesparing/</a>





#### International context

- Definition of indicators aligned to match the national and, if possible, international context
- This makes indicators consistent between different energy efficiency reporting obligations
- Most important example: allocation of CHP input energy to electricity and heat
  - The allocation method used for CHP in power plants is a variant of the standard Dutch calculation of CO<sub>2</sub> emissions from electricity generation
  - Energy savings calculated by comparing combined generation of heat and power to separate generation
  - Half of the saved energy is allocated to electricity, half of it to heat generation



