

Magan, I.H. (Isaï)
Tejada Arango, D.A. (Diego)
Zwamborn, A. (Arjan)

Agenda

- 1. Introduction
- 2. Methodology
- 3. Results
- 4. Discussion
- 5. Conclusion
- 6. Questions

Introduction

- EU ambitions for increasing the energy performance of dwellings
 - EU Energy Performance of Buildings Directive (EU/2024/1275)
 - Fully decarbonize building stock by 2050
 - Reduce average primary energy consumption of dwellings with at least 16% by 2030 (RESCoop EU, 2024)
- Energy Performance Certificate
 - Used as a metric to assess the energy efficiency of a household
 - Often represented in classes (A, B, C...)
 - Underlying classification expressed in some consumption metric such as kWh/m²/year

Figure 1: EU Directive (DR Deutsche Recycling Service GmbH, 2024)

Figure 2: Dwelling classes (EPG, 2025)

Introduction

- Default methodology to assess energy performance of dwellings in the Netherlands – NTA 8800
 - Mandatory when a dwelling is constructed or sold
 - Not easily reproducible
 - Time consuming
 - Has not assigned energy labels to all dwellings yet (~40% missing as of 1st of January 2024)
 - Widely used by municipalities, architects, construction companies
- The aim of this study was to develop an alternative methodology
 - Tree-based machine learning
 - Assign labels and interpret the assignment

Figure 3: NTA 8800 (Duresta, 2019)

Methodology

- Tree-based machine learning model
 - Predicts using decision trees
 - Trees split data into smaller groups to make decisions
 - These decisions relate to classification
 - Random forest
 - Trees are developed in parallel
 - Combine many trees and average their predictions
 - Boosted trees (XGBoost)
 - Trees are developed sequentially
 - Each tree attempts to improve the performance of the former
 - Final tree is taken for prediction purposes

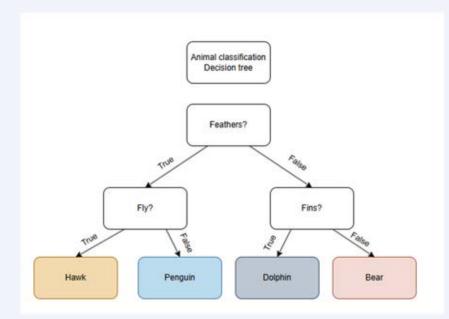


Figure 4: Example of a decision tree for animal multiclass classification

Methodology

- The machine learning models are trained on specific datasets that contain information on already labelled dwellings
 - Training set (~70%)
 - Stratified sampling
- These datasets contain the following dwelling-specific information:
 - Building year
 - Surface area
 - Compactness*
 - Ownership type
 - Ventilation type
 - Heating type
 - Surface and insulation quality of individual components
 - Roof, windows, doors, floors, walls, panels

Table 1: Example of dwelling-specific information in table format used for training the models

Parameter	Dwelling #1	Dwelling #2	Dwelling #3
Surface area	69	137	92
Area of heat loss	88.991	377.218	420.422
Compactness	1.29	2.753	4.57
Surface area of the walls	18.902	157.955	174.910
Surface area of the floor	0	87.15	67.813
Surface area of the roof	50.274	109.185	156.786
Surface area of the windows	17.116	16.699	15.787
Surface area of the doors	2.699	6.229	4.112
Surface area of the panels	0	0	1.012
Building year	2002	1900	1935
Building type	5	2	1
Ventilation type	Mechanical	Natural	Natural
Water heating type	HR	Other	HR
General heating type	HR	Other	Heat pump
Ownership type	2	0	0
Insulation quality of the walls	2	0	0
Insulation quality of the floors	Missing	1	0
Insulation quality of the roof	2	0	0
Insulation quality of the panels	Missing	Missing	0
Insulation quality of the windows	2	3	2
Insulation quality of the doors	1	1	1
Insulation quality of the sealing material	0	0	0

Results

- Random forest model performs slightly better than boosted trees
 - Assessment of models is done through the accuracy metric (how often is the prediction correct?)
- Average accuracy of the model is around 80%
 - Randomly assigning labels would result in an accuracy of ~1/7 (14.3%)
- When inaccurate, model tends to predict a more efficient label

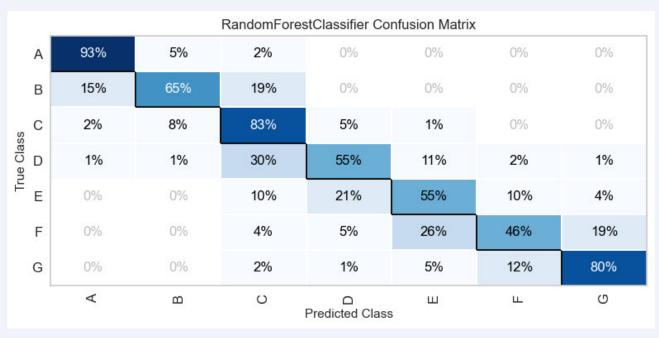


Figure 5: Confusion matrix result for the random forest classification model depicting predicted class against true class

Results

- Interpretability influence of different individual building characteristics on EPC assignment
 - SHAP value indicates magnitude of impact (SHapley Additive exPlanations)
 - Results available per EPC assignment class see below for 'label G' (worst performing dwellings)

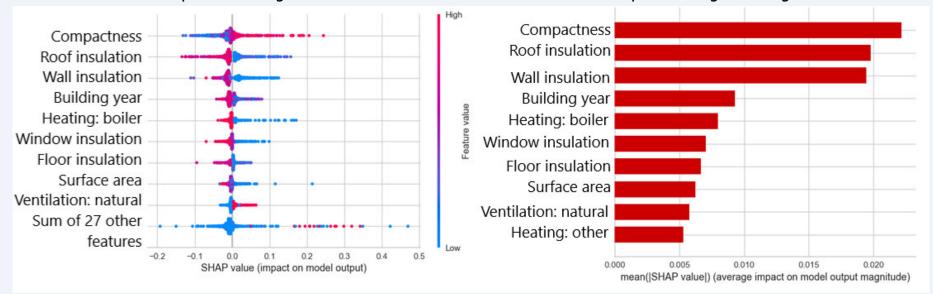


Figure 6: Interpretability plot of the impact of dwelling characteristics on the EPC assignment of the worst performing dwellings

Discussion

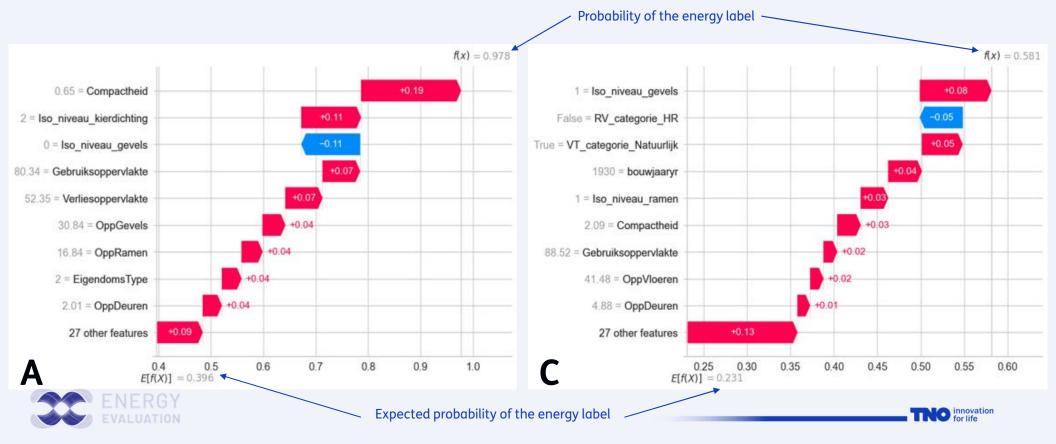
- Aim was to establish an alternative methodology
 - Machine learning model
 - However, subject to data quality
 - Skewed dataset
 - Limited number of parameters (including non-actionable such as building year)
 - Some impactful parameters excluded (solar PV, ventilation)
- Interpretability analysis
 - Provides insights on impact of specific characteristics on assignment
 - Can differentiate between different EPC classes (e.g. best- or worst-performing dwellings)
 - However, what are follow-up steps or research topics necessary for policy makers?
 - Non-actionable characteristics provide little to no available follow-up steps
 - Requires follow-up work to analyse improvement strategies of dwelling stock

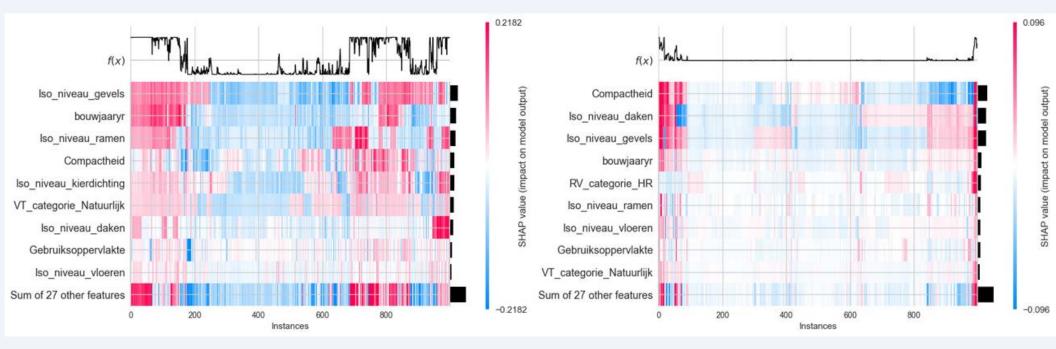
Conclusion

- Alternative for the standard NTA 8800 procedure
 - Random forest classification model
 - Interpretability functionality
 - Not intended as a substitute, rather as a complimentary tool
 - Generalized enough to be applicable outside of the Netherlands
- We find that for the worst performing dwellings in the Netherlands are mostly impacted by:
 - The quality of the insulation of the roof and facades
 - The type of space heating
- · Ongoing effort to train similar models on additional dwelling-specific criteria
 - Instead of multi-class classification, another option is to estimate energy efficiency directly (regression)
- Follow-up work necessary to translate into effective measures for improving energy efficiency metrics in dwellings

Questions

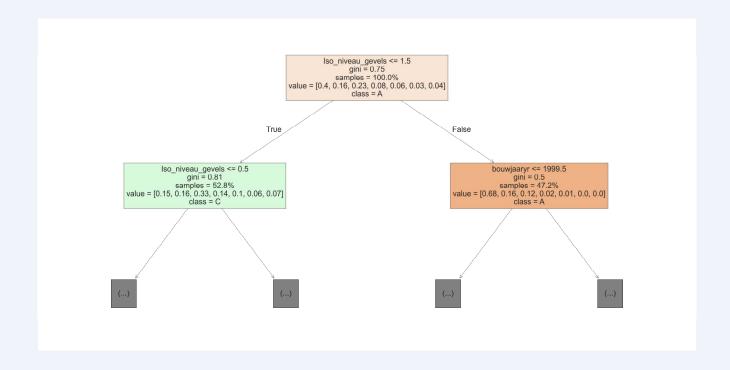
References


- DR Deutsche Recycling Service GmbH. (2024). EU Directive for EPR Packaging Act, WEEE & Bat. Deutsche Recycling. https://deutsche-recycling.com/blog/eu-directive-for-epr-packaging-act-weee-battg/
- Duresta. (2019). Welke invloed heeft de Nta8800 op het wws?. Duresta. https://www.duresta.nl/2019/11/nta8800/
- EPG. (2025). Herziening Bijlage AA (2025) bij NTA 8800:2024 'Energieprestatie van gebouwen' gepubliceerd. Energieprestatie voor Gebouwen. https://www.gebouwen-gepubliceerd/
- REScoop EU (2024). Directive (EU) 2024/1275 (recast European Performance of Buildings Directive). RESCoop EU. https://www.rescoop.eu/uploads/rescoop/downloads/EPBD-Policy-Briefing-2nd-Generation-of-Energy-Communities-Legislation.pdf



Appendix 1 - Interpretability of the Model

Example of two dwellings with energy labels A and C.


Appendix 2 - Interpretability of Label A and G in 1000 dwellings

Appendix 3 – example decision tree

