

Achieving greater residential energy savings through optimised subsidy allocation

Danai Sofia Exintaveloni, Eirini Vasilakou, Dimitra Tzani, Alexandros Flamos

Technoeconomics of Energy Systems Laboratory (TEESlab)

Dept. of Industrial Management & Technology, University of Piraeus (UNIPI)

University of Piraeus Research Center (UPRC)

Session 01 – Buildings I

Energy Evaluation Europe Conference 2025

25-26 September 2025

With the contribution of the Green Fund

- 1 Introduction
- 2 Objective & Methods
- 3 Application
- 4 Modeling energy performance The DREEM model
- Building Typologies
- 6 Energy Efficiency Measures
- 7 Annual Energy Savings
- 8 Optimisation
- 9 Preliminary Results
- Further Research & Next Steps

Introduction - Scope of ENSMOV Plus

Project name: Evaluation, QuaNtification and Strengthening of the IMplementation of the POlicies and EM&V under Article 7 (now 8) of the EED

Article 8 (formerly Article 7) requires all MS to deliver progressively increasing annual savings:

- ✓ 1.3% in 2024–2025
- ✓ **1.5%** in 2026–2027
- ✓ **1.9%** from 2028 onward

Facilitates knowledge exchange between peers

Strengthens M&V systems and evaluations

Provides tools, resources, and real-world policy support

Introduction – Buildings

Buildings account for the substantial share of 43% of the total final energy consumption in the EU.

Residential buildings in particular are responsible for 25% of the total energy consumption and 20% of greenhouse gas emissions.

Approximately 75% of European buildings are energy inefficient and 85-95% of them are expected to still be standing in 2050.

Retrofitting actions have been recognised as a key strategy for reducing energy use and achieving the national and international energy efficiency targets.

Introduction - Policy

00

Public policy interventions are crucial in the renovation effort.

EU Member States implement a wide range of policy instruments ranging from regulatory and behavioural measures to tax exemptions and financial incentives like grants and subsidies.

Many programmes are designed without fully assessing the effectiveness of eligible interventions.

Strategic allocation of funds is essential to maximise energy and achieve a higher overall impact.

Studies have highlighted the need to consider costeffectiveness and maximisation of energy savings in design and implementation.

Objective & Methods

The objective of this study is to present a multi-step approach for assessing the energy savings that can be delivered through a subsidy scheme for energy efficiency renovations.

Define the baseline building typologies to be used in the study

Simulate the energy performance of the baseline buildings using the DREEM model

Weather data

Occupancy profiles

1

Define the single energy efficiency measures and renovation packages under investigation

Subsidy scheme technical requirements

Simulate the energy savings that can be delivered in each building typology from the various single measures or renovation packages

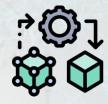
Define an optimisation model to maximize the energy savings that can be delivered through a subsidy scheme subject to the budgetary constraint

Costs of each renovation measure

Energy savings that can be achieved with the subsidy scheme

Application

- Croatian subsidy scheme for **single family houses**
- Overall available budget: 120,000,000.00 euros


Activities covered:

- ❖ Complete energy renovation including improvement of the **thermal insulation** of the **building envelope** and **installation of energy systems** using **RES technology**.
- ❖ Improvement of **thermal insulation** of the building envelope.
- ❖ Installation of technical heating/cooling systems using renewable energy sources.
- ❖ Installation of technical systems for electricity production for own consumption using renewable energy sources.

Modeling energy performance - The DREEM model (1/2)

a.L

Energy Policy

Volume 161, February 2022, 112759

REEF

Monetising behavioural change as a policy measure to support energy management in the residential sector: A case study in Greece

Konstantinos Koasidis * A III, Vangelis Ma Doukas *

Energy Conversion and Management

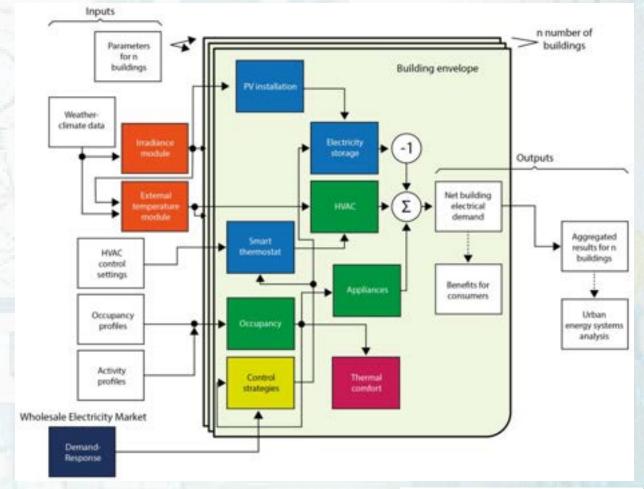
Volume 205, 1 February 2020, 112339

A modular high-resolution demand-side management model to quantify benefits of demand-flexibility in the residential sector

Vassilis Stavrakas, Alexandros Flamos A 88

Energy demand simulation model

Modeling energy performance - The DREEM model (2/2)



Model characteristics

Main **principles** of **component-** & **modular-** based system modeling approach

- interdependence of decisions within modules
- independence of decisions between modules
- hierarchical dependence of modules on components embodying <u>standards</u>
 & <u>design rules</u>

Modular structure

Building Typologies

6 Typologies are used according to the construction period and climate zone.

Coastal Climate Zone: Split

Continental Climate Zone: Zagreb

Parameter		Continental Croati	a	Coastal Croatia			
	Typology 1	Typology 3	Typology 5	Typology 2	Typology 4	Typology 6	
XV. C	<1969	1970-1989	>1989	<1969	1970-1989	>1989	
Year of construction	ES ES PRODUCTO	MINDLE STREET	MILLER MILLER	PRODUCTION AND AND AND AND AND AND AND AND AND AN	PRODUCTION AND PRODUCTION	MODALIO MODALIO	
Type of building	Residential,	Residential,	Residential,	Residential,	Residential,	Residential,	
Type of building	detached	detached	detached	detached	detached	detached	
Total floor area	69.8 m2	96.32 m2	104.03 m2	72.19 m2	95.39 m2	95.39 m2	
Height	2.80 m	2.80 m	2.80 m	2.80 m	2.80 m	2.80 m	
Total roof area	69.8 m2	96.32 m2	104.03 m2	72.19 m2	95.39 m2	95.39 m2	
Total walls area	94.6 m2	104.03 m2	105.4 m2	97.38 m2	103.47 m2	103.47 m2	
Total windows area	7.92 m2	12.48 m2	16.72 m2	7.91 m2	12.48 m2	12.48 m2	

Energy Efficiency Measures

Single Measures

Packages of Measures

Optimisation

Aim: Optimise the allocation of the given budget while maximising energy savings from building renovations, taking into account pathways of constraints.

Simplified objective function

$$\max \sum_{i=1}^{n} \sum_{j=1}^{m} S_{i,j} * x_{i,j}$$

Where:

- S_{i, j} = Energy savings of j renovation in typology i
- X_{i, j}= number of j renovations in typology i

Main parameters used:

- Costs of renovation measures
- Energy savings achieved by each scenario, based on simulations with the DREEM model.

Major constraints

- Available budget: 120,000,000 euros
- Max grant per application: 62,120 euros
- Max grant contribution per measure
- Building stock constraints

Results - Annual Energy Savings (1/4)

Typology 1 (Continental before 1969)

Typology 2 (Coastal before 1969)

Energy Efficiency measure	Annual energy savings (kWh/year)	Energy Efficiency measure	Annual energy savings (kWh/year)	Energy Efficiency measure	Annual energy savings (kWh/year)	Energy Efficiency measure	Annual energy savings (kWh/year)
#1	2900.648	#11	8619.238	#1	2660.29	#9	5904.843
#2	5670.07	#12	9167.788	#2	2934.534	#10	6961.19
#3	1646.518	#13	4362.113	#3	827.47	#11	5534.782
#7	4270.44	#14	139.63	#7	5105.36	#14	139.63
#8	8179.517	#15	9032.953	#8	5392.902	#17	8822.28
#9	8935.541	#16	2784.783				
#10	9868.461	#17	11375.17				

Results - Annual Energy Savings (2/4)

Typology 3 (Continental 1970-1989)

Typology 4 (Coastal 1970-1989)

Energy Efficiency measure	Annual energy savings (kWh/year)	Energy Efficiency measure	Annual energy savings (kWh/year)	Energy Efficiency measure	Annual energy savings (kWh/year)	Energy Efficiency measure	Annual energy savings (kWh/year)
#1	2772.238	#10	12578.65	#1	3038.68	#9	7237.81
#2	6996.004	#11	10897.87	#2	3942.48	#10	8704.408
#3	1018.064	#12	11402.33	#3	619.87	#11	6832.11
#4	10726.11	#13	4941.428	#4	6659.515	#14	139.63
#5	4279.079	#14	139.63	#7	5105.36	#17	10155.25
#6	1795.888	#15	11055.3	#8	6871.45		
#7	4270.44	#16	2662.908				X X
#8	9902.628	#17	13243.67				X 3
#9	10804.04						

Results - Annual Energy Savings (3/4)

Typology 5 (Continental after 1989)

Typology 6 (Coastal after 1989)

Energy Efficiency measure	Annual energy savings (kWh/year)	Energy Efficiency measure	Annual energy savings (kWh/year)	Energy Efficiency measure	Annual energy savings (kWh/year)	Energy Efficiency measure	Annual energy savings (kWh/year)
#1	2787.87	#10	13766.26	#1	1609.43	#9	4771.87
#2	7498.01	#11	11997.03	#2	2728.18	#10	6263.7
#3	1509.34	#12	12466.3	#3	700.69	#11	5119.74
#4	11742.99	#13	5664.85	#4	4923.25	#14	139.63
#5	4673.68	#14	139.63	#7	5105.36	#17	7689.31
#6	1963.95	#15	12088.32	#8	4221.403		
#7	4270.44	#16	3252.01				XXXX
#8	10429.78	#17	14255.97				
#9	11816.34						

Results - Preliminary on optimization (4/4)

Three scenarios:

Scenario 1: Baseline -envelop focused

Scenario 2: Emphasizing integrated renovations and electrification through heat pumps

Scenario 3: Emphasizing holistic transformation with additional focus on comprehensive and multi-measure retrofits

	Energy savings (kWh/year)					
Measures	Scenario 1	Scenario 2 🚳	Scenario 3			
Integrated renovations (Envelop + Technical system)	12,860,558	35,230,124	48,953,713			
Envelop renovations	119,802,304	158,110,482	154,359,596			
Technical system replacement	2,089,759	46,014,946	46,063,596			
PV & EV charging	8,861,105	29,052,308	29,052,308			
	143,613,728	268,407,860	278,429,213			

Increasing emphasis on electrification and holistic renovations (envelop + technical system) can significantly increase the savings delivered reducing also the cost per kWh saved for the programme by 33%.

Further Research & Next Steps

... What is next?

Explore different optimisation pathways and assess their impact on the results.

Conduct consultations with the Croatian authority to discuss the outcomes, benchmark them against available assessments, and integrate additional elements into the study.

Synthesize the final outcomes into targeted policy recommendations to support decision-making.

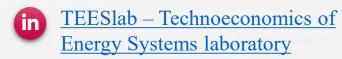
Investigate additional implications (e.g., in terms of cost-effectiveness)

25 SEP - 26 SEP 2025

Thank you!

Danai Sofia Exintaveloni

Research Associate at Technoeconomics of Energy Systems...



https://teeslab.unipi.gr/

