

School of Management and Law

Taxes versus Targets: An Empirical Analysis of two Policy Instruments on Greenhouse Gas Mitigation in the Industry and Service Sector

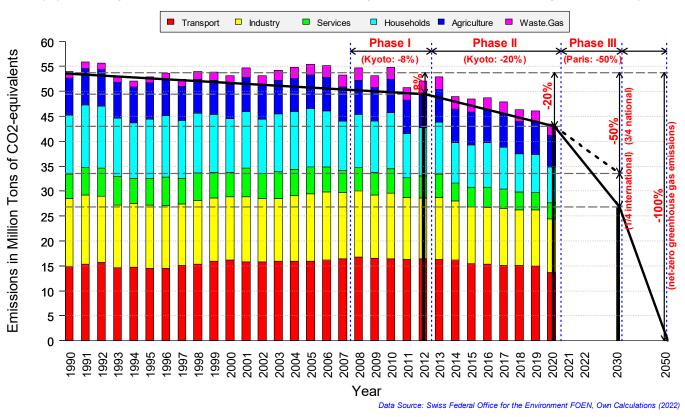
Building Competence. Crossing Borders.

Thomas Leu

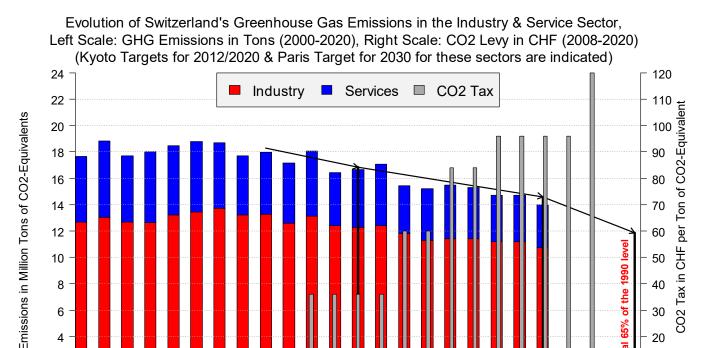
Motivation

- •What is the effect of the Swiss climate policy mix on firms' energy consumption and CO₂ emissions in the industry and service sector?
- •Is it possible to quantify a difference in the mitigation effect between a mandatory CO₂ levy and binding reduction target agreement.
- What are the challenges when facing such a research question?

Outline of the Presentation


- Introduction to the topic
- Descriptive overview of the energy consumption and GHG emissions in the industry and the service sector
- Switzerland's energy and climate policy instruments for the industry and the service sector
- The CO₂ levy and economic incentives
- Project and research question
- Description of the underlying two different databases
- Strategy for linking these two datasets
- Empirical strategy and descriptive overview
- Results from a previous study taking into account only the CO₂ tax
- Conclusion and outlook

Evolution of Switzerland's Greenhouse Gas Emissions by Sector, Aggregate Data 1990 – 2020


Evolution of Switzerland's Greenhouse Gas Emissions subdivided by Sectors, 1990-2020 (Kyoto Targets for 2012 and 2020, Paris Target for 2030, Federal Target for 2050)

• In 2020, the industry and service sector account for 32.3% (yellow and green bars) of the total greenhouse gas emissions of 43.4 million tons of CO₂eq.

Evolution of Switzerland's Greenhouse Gas Emissions in the Industry & Service Sector, Aggregate Data 2000 – 2020

2013

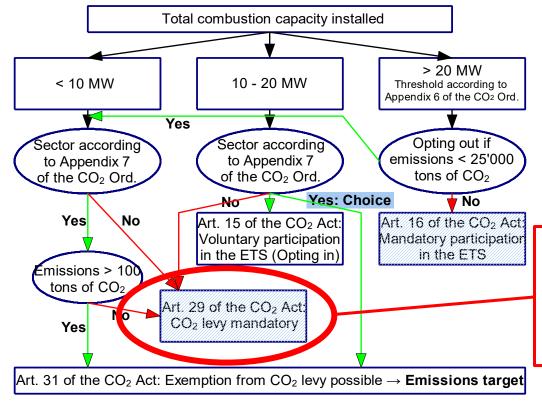
2012

Year

2011

Data Source: Swiss Federal Office for the Environment FOEN, Own Calculations (2022)

2019

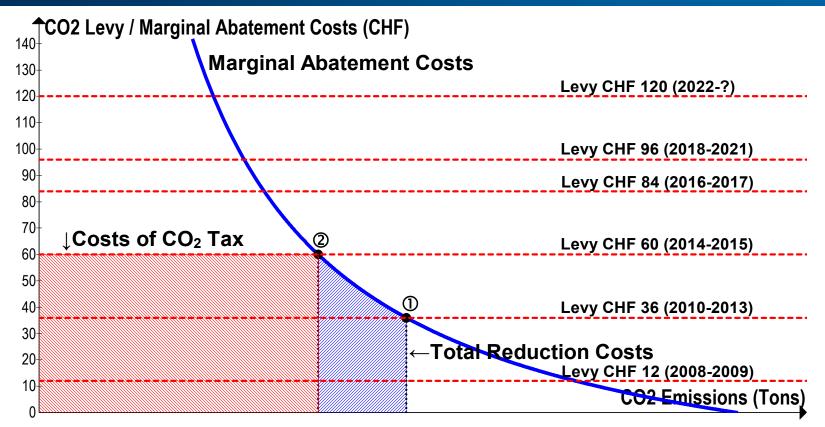

- The sectoral interim target path towards a maximum of 65% of the 1990 level in 2030 is indicated.
- The sectoral target of the CO₂ Ordinance is likely to be achieved.

2006 2007 2008

10

The three main Climate Policy Instruments available in the Swiss Industry & Service Sector

- CO₂ levy on fossil heating and process fuels: Carbon tax imposed on fossil heating fuels (Default for the majority of the installations).
- Emissions trading scheme (ETS):
 Mandatory for 56 CO₂-intensive companies («cap-and-trade»-principle, linked to EU ETS).
- Exemption from the CO₂ levy possible for CO₂-intensive companies under certain conditions. In return, companies have to commit to an emissions target.


The CO₂ levy is the

instrument for the

majority of the

installations.

Economic Incentives for applying for an Exemption from the CO₂ Levy

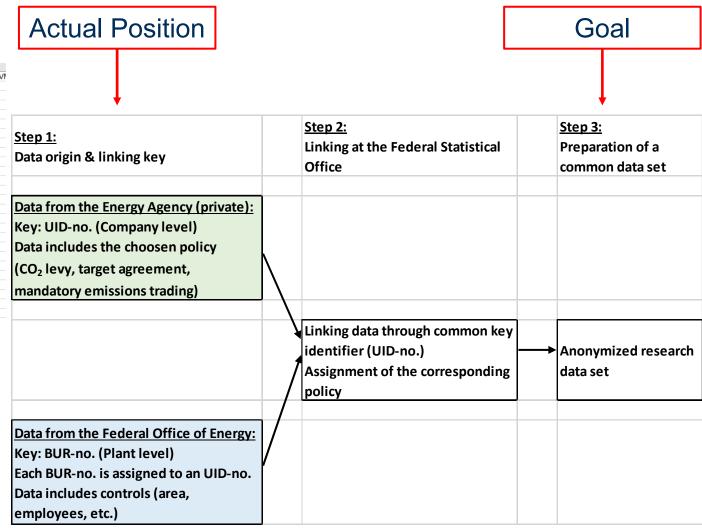
- The CO₂ Levy was increased 5 times after its introduction in 2008; last time in 2022.
- Starting position: CO₂ tax increases from CHF 36 to CHF 60 per ton of CO₂eq.
- A rational firm moves along the marginal abatement cost function from point ① to point ②.
- Total reduction costs: blue area. Tax costs: red area.
- The tax costs can be saved by committing to a target agreement.

Research Questions and Research Project

Research Questions

- What is the impact of the CO₂ tax versus the target agreements on greenhouse gas emissions mitigations in the industrial and services sector?
- Can the null-hypothesis, which states that the impact on greenhouse gas emissions mitigations does not differ between the two groups, econometrically be rejected, by applying microdata of firm behavior.

Challenges


- Two different datasets from two sources (Federal Office of Energy & Energy Agency of the Swiss Private Sector) must be linked.
- Finding an adequate econometric strategy to avoid self selection bias issues as well as the lack of a control group.

The Process of Data Collection

4	Α	В	С	D	Е	F	G	Н	
1	year	ID AST	GROUP	AVOLLZ	ATEILZ	ABGF	BVM1	CVM1	CV
2	1999	1	13	6	0	400	0.2736	0.42982952	
3	2000	1	13	5	0	NA	0.2721312	0.35835935	
4	2001	1	13	6	1	NA	0.2592	0.39438018	
5	2002	1	13	3	0	NA	0.2574	0.32282597	
6	2003	1	13	5	1	NA	0.2664	0.32297725	
7	2007	1	13	4	1	300	0.2232	0.28762922	
8	2008	1	13	2	2	300	0.2124	0.2517926	
9	2009	1	13	1	1	120	0.1062	0.21592337	
10	2005	2	9	9	0	1160	0.112716	0.25143985	
11	2006	2	9	10	1	1160	0.1116	0.21562072	
12	2007	2	9	10	1	1100	0.155765	0.23830067	
13	2008	2		10	1	1100	0.128664	0.17992377	
14	2009	2	9	12	1	1100	0.107438	0.28728601	
15	1999	3	18	8	7	600	0.13572	0	
16	2000	3	18	15	0	650	0.126	0	
17	2002	3		11	9	650	0.1198872	0	
18	2003	3	18	10	11	650	0.1461276	0	
19	2006	3	18	14	7	650	0.1389672	0	
20	2007	3	18	14	9	650	0.137743	0	
21	2004	4	13	28	6	8937	2.0664576	1.14911685	
22	2005	4	13	27	9	8937	1.838448	0	
23	2006	4	13	32		7880	1.7243064	0.6180768	
24	2007	4	13	20	17	7880	2.641327	0	
25	2009	4	13	17	15	7880	2.041344	1.26811732	
26	2011	4	13	32	0	8635	2.2096224	1.25955354	

	ID Zielverei		ID Erfassung						Verbrauch
1	nbarun _i *	Art der ZV ▼			Noga-Code *	Jahr 🕶	Energieträger		[MWh/a] =
5	cec1f7fb-c	Freiwillig (ohne zukünftigen Bescheinigungsansp	r cb89fe6c-	7	107100	2019	Elektrizität (Bezug)	******	1'097
5	cec1f7fb-c	Freiwillig (ohne zukünftigen Bescheinigungsansp	rcb89fe6c-	7	107100	2019	Erdgas (Brennstoff)		343
7	cec1f7fb-c	Freiwillig (ohne zukünftigen Bescheinigungsansp	cb89fe6c-	7	107100	2020	Elektrizität (Bezug)		1'080
3	cec1f7fb-c	Freiwillig (ohne zukünftigen Bescheinigungsansp	cb89fe6c-	7	107100	2020	Erdgas (Brennstoff)		407
9		Freiwillig (ohne zukünftigen Bescheinigungsansp				2021	Elektrizität (Bezug)		1'117
)	cec1f7fb-c	Freiwillig (ohne zukünftigen Bescheinigungsansp	r cb89fe6c-	7	107100	2021	Erdgas (Brennstoff)		405
ı		Reduktionspfad (individuell)	ea105669				Elektrizität (Bezug)		3'968
2	61b0bfac-	Reduktionspfad (individuell)	ea105669	-9	139600	2013	Erdgas (Brennstoff)		11'419
3	61b0bfac-	Reduktionspfad (individuell)	ea105669	-9	139600	2014	Elektrizität (Bezug)		3'765
į	61b0bfac-	Reduktionspfad (individuell)	ea105669	-9	139600	2014	Erdgas (Brennstoff)		10'298
5	61b0bfac-	Reduktionspfad (individuell)	ea105669	-9	139600	2015	Elektrizität (Bezug)		3'126
5	61b0bfac-	Reduktionspfad (individuell)	ea105669	-9	139600	2015	Erdgas (Brennstoff)		8'383
7	61b0bfac-	Reduktionspfad (individuell)	ea105669	-9	139600	2016	Elektrizität (Bezug)		2'797
	61b0bfac-	Reduktionspfad (individuell)	ea105669	-9	139600	2016	Erdgas (Brennstoff)		7′704
)	61b0bfac-	Reduktionspfad (individuell)	ea105669	-9	139600	2017	Elektrizität (Bezug)		2'651
)	61b0bfac-	Reduktionspfad (individuell)	ea105669	-9	139600	2017	Erdgas (Brennstoff)		7'700
	61b0bfac-6	Reduktionspfad (individuell)	ea105669	-9	139600	2018	Elektrizität (Bezug)		2'608
	61b0bfac-	Reduktionspfad (individuell)	ea105669	-9	139600	2018	Erdgas (Brennstoff)		7'332
	61b0bfac-	Reduktionspfad (individuell)	ea105669	-9	139600		Elektrizität (Bezug)		2′572
ı		Reduktionspfad (individuell)	ea105669	-9	139600	2019	Erdgas (Brennstoff)		6'584
,	61b0bfac-	Reduktionspfad (individuell)	ea105669	-9	139600	2020	Elektrizität (Bezug)		2'438
		Reduktionspfad (individuell)	ea105669			2020	Erdgas (Brennstoff)		6'439
7		Reduktionspfad (individuell)	ea105669	-9	139600		Elektrizität (Bezug)		2′374
,	61b0bfac-	Reduktionspfad (individuell)	ea105669	-9	139600	2021	Erdgas (Brennstoff)		6'509
į	h7-25-014	n - Jl. 1 1 / 1 1 / 1 1 / 1	1-1000-60		FF1001	2015	FI-I-4-1-1484 (D)		2/070

Empirical Strategy I

Step I: (Data from the representative survey conducted by the Swiss Federal Office of Energy; plants exempted by the CO2 levy are identified and eliminated from the dataset):

- The causal effect of the different levels of the CO₂ tax, paid by those plants not being exempted from the tax, is empirically analyzed.
- Standard firm fixed effects regression models which control for unobserved heterogeneity of time-invariant plant-specific characteristics, such as the management's attitude toward environmental aspects, are applied.
- Regressions of the form are estimated:

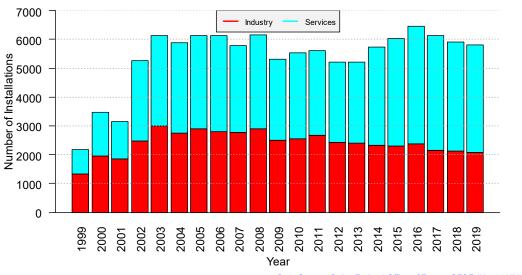
$$y_{it} = D_k \tau + x'_{it} \eta + A'_t \gamma + \theta_i + \lambda t + \varepsilon_{it}$$

- y_{it}: dependent variable for the GGE of plant i in period t
- D_k: policy vector indicating the different tax level periods
- x_{it}: vector of time-variant firm specific factors (firm size, number of employees, etc.)
- A_t: Vector of economy wide indicators (heating degree-days, oil price, economy-wide activity etc.)
- λ : Time Trend to capture technological progress.

Empirical Strategy II

Step II: (Data from the representative survey conducted by Swiss Federal Office of Energy are linked with the data originating from the Energy Agency of the Swiss Private Sector):

- Plants of companies which committed themselves to a binding target agreement are identified by linking the SFOE sample with data from the Energy Agency.
- As firms self-select themselves into target agreement programs, differences-in-differences estimators or other quasi experimental methods are applied to best avoid self-selection issues.
- The null-hypothesis, which states that the impact on greenhouse gas emissions mitigations does not differ between the two groups, is being tested.
- The resulting empirical evidence might provide findings that allow to distinguish the impact of the CO₂ tax opposed to that of the target agreements.

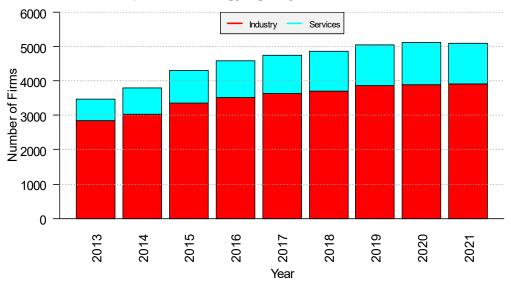


Description of the two Datasets I: Number of Installations / Firms

SFOE: Representative sample of installations:

 Due to its representativeness, the SFOE sample more adequately represents the evolution of the economic sectors.

Number of Installations grouped by Sector (1999-2019) SFOE Sample: Energy Consumption in the Industry and Service Sector



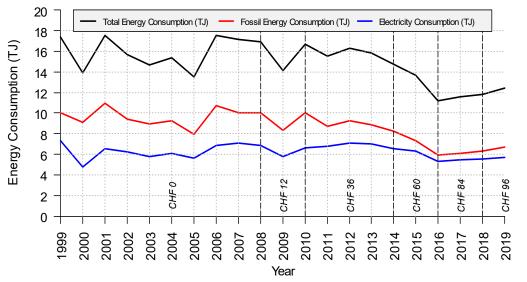
Data Source: Swiss Federal Office of Energy SFOE (N = 113'271)

EnAW: Firms exempted from the CO_2 tax \rightarrow target agreement:

 Self selection and the entry restriction led to an overrepresentation of the industry sector.

Number of Firms grouped by Sector (2013-2019)
Population: Energy Agency of the Swiss Private Sector

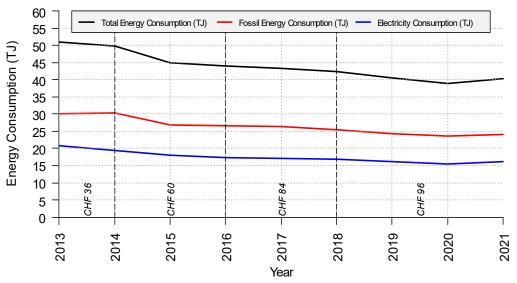
Data Source: Energy Agency of the Swiss Private Sector EnAW (N = 41'079)



Description of the two Datasets II: Average Energy Consumption (TJ)

SFOE: Representative sample of installations:

 Average energy consumption has been decreasing since 2008.

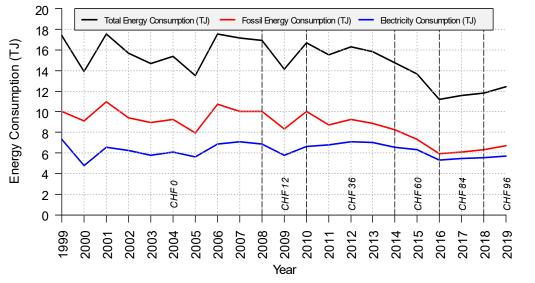

Evolution of the Average Energy Consumption (1999-2019) SFOE Sample: Energy Consumption in the Industry and Service Sector

EnAW: Firms exempted from the CO_2 tax \rightarrow target agreement:

 The higher average energy consumption of EnAW-firms is due to data on company instead of installation level.

> **Evolution of the Average Energy Consumption (2013-2021)** Population: Energy Agency of the Swiss Private Sector

Data Source: Energy Agency of the Swiss Private Sector EnAW (N = 41'079)

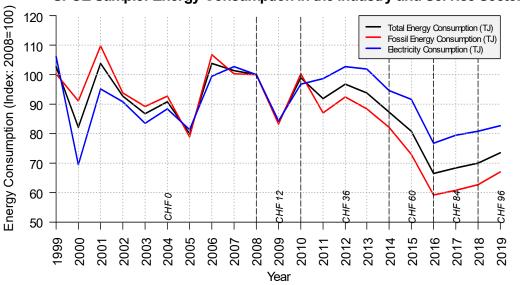


Description of the two Datasets III: Average Energy Consumption (TJ)

SFOE: Representative sample of installations (absolute Values):

 Average energy consumption has been decreasing since 2008.

Evolution of the Average Energy Consumption (1999-2019) SFOE Sample: Energy Consumption in the Industry and Service Sector



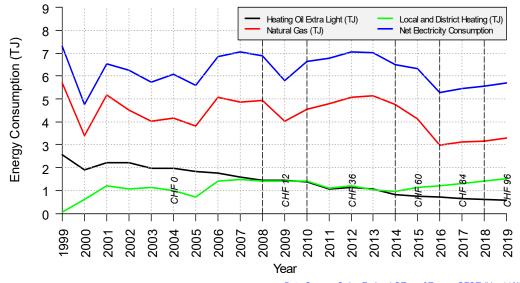
Data Source: Swiss Federal Office of Energy SFOE (N = 113'271)

SFOE: Representative sample of installations (Index: 2008 = 100):

• Fossil energy consumption (-33%) is decreasing more than electricity consumption (-17%). This might be a hint for substitution processes.

Evolution of the Average Energy Consumption (1999-2019)
SFOE Sample: Energy Consumption in the Industry and Service Sector

Data Source: Swiss Federal Office of Energy SFOE (N = 113'271)

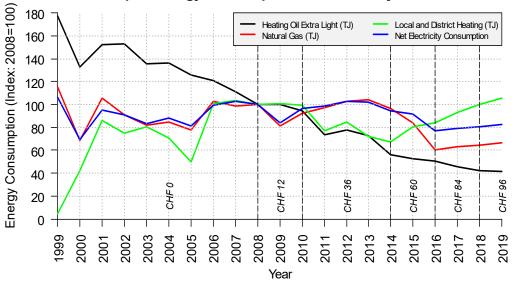


Description of the two Datasets IV: Average Energy Consumption (TJ)

SFOE: Representative sample of installations (absolute Values):

 Average energy consumption of heating oil has been decreasing most since 2008. It is partly substituted by district heating.

Evolution of the Average Energy Consumption by Source (1999-2019) SFOE Sample: Energy Consumption in the Industry and Service Sector



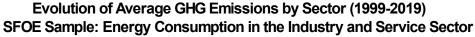
Data Source: Swiss Federal Office of Energy SFOE (N = 113'271)

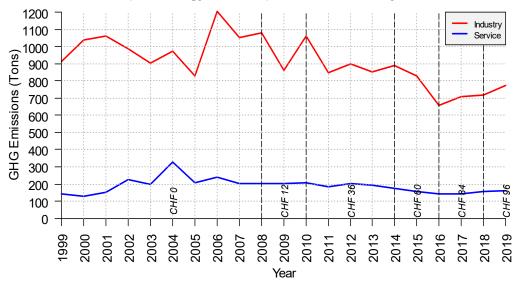
SFOE: Representative sample of installations (Index: 2008 = 100):

- The consumption of heating oil has been decreasing the most (-59%).
- The consumption of district heating is increasing (+6%). →Buildings program, Heating degree-days are decreasing.

Evolution of the Average Energy Consumption by Source (1999-2019) SFOE Sample: Energy Consumption in the Industry and Service Sector

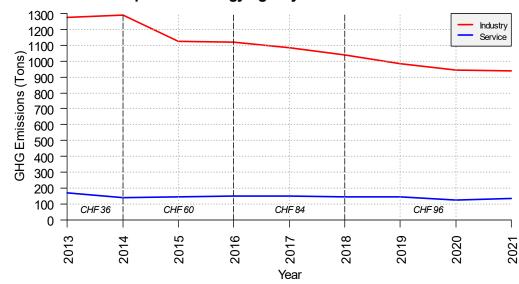
Data Source: Swiss Federal Office of Energy SFOE (N = 113'271)


Description of the two Datasets V: Average Green House Gas Emissions by Sector (Tons)


SFOE: Representative sample of installations:

 Average greenhouse gas emissions have been decreasing since 2008.

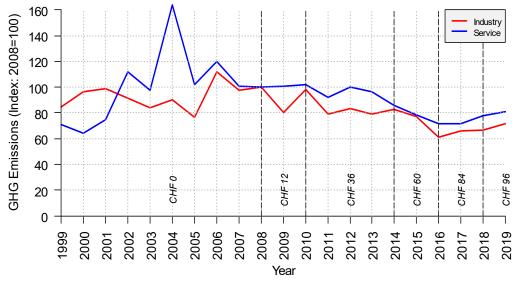
EnAW: Firms exempted from the CO_2 tax \rightarrow target agreement:


 The reduction path of the participants with binding target agreements is more stable.

Data Source: Swiss Federal Office of Energy SFOE (N = 113'271)

Evolution of Average GHG Emissions by Sector (2013-2021) Population: Energy Agency of the Swiss Private Sector

Data Source: Energy Agency of the Swiss Private Sector EnAW (N = 41'079)

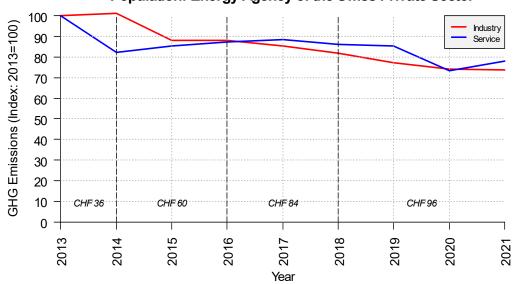


Description of the two Datasets VI: Average GHG Emissions by Sector (Index: 2008/2013 = 100)

SFOE: Representative sample of installations:

 The industry sector reduces average GHG Emissions by 38% and the service sector by 29% compared to 2008.

Evolution of Average GHG Emissions by Sector (1999-2019) SFOE Sample: Energy Consumption in the Industry and Service Sector



Data Source: Swiss Federal Office of Energy SFOE (N = 113'271)

EnAW: Firms exempted from the CO_2 tax \rightarrow target agreement:

The industry sector reduces average GHG Emissions by 26% and the service sector by 22% compared to 2013.

> **Evolution of Average GHG Emissions by Sector (2013-2021)** Population: Energy Agency of the Swiss Private Sector

Data Source: Energy Agency of the Swiss Private Sector EnAW (N = 41'079)

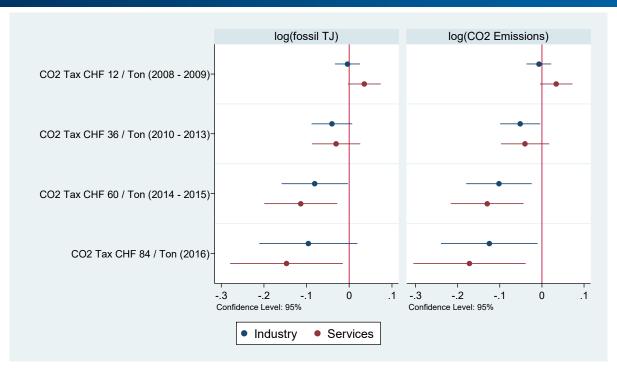
Summary Statistics of Fixed Effects Regression Estimates of a previous Study presented at IEPPEC 2018 (t = 1999, ..., 2016)

Dependent variable: log(CO ₂)	Model 1	Model 2	Model 3	Model 4	
Regressor					
Dummy CO ₂ Tax CHF 12 (2008, 2009)	-0.0490**	-0.0490** -0.0560** 0.00894		0.00860	
	(0.00871)	(0.0100)	(0.0121)	(0.0121)	
Dummy CO ₂ Tax CHF 36 (2010, 2011, 2012, 2013)	-0.103**	-0.112**	-0.0544**	-0.0532**	
	(0.0110)	(0.0151)	(0.0188)	(0.0187)	
Dummy CO ₂ Tax CHF 60 (2014, 2015)	-0.248**	-0.261**	-0.127**	-0.125**	
	(0.0150)	(0.0218)	(0.0295)	(0.0295)	
Dummy CO₂ Tax CHF 84 (2016)	-0.246**	-0.241**	-0.164**	-0.161**	
	(0.0181)	(0.0267)	(0.0446)	(0.0443)	
R-squared (within)	0.017	0.046	0.058	0.055	
Firm Specific Controls	NO	YES	YES	YES	
Economy Wide Controls	NO	NO	YES	YES	
Trimmed upper 1%	NO	NO	NO	YES	

Note: Asterisks indicate the significance level at 5% (*) and 1% (**). The standard errors in parentheses are corrected for heteroscedasticity and serial correlation across clusters. Data Source: Swiss Federal Office of Energy.

- The baseline period are the years 1999-2007 (Pre-policy period: No CO₂ tax was levied until 2008).
- By controlling for other effects, the CO₂ levy has a significant negative impact on the greenhouse gas emissions.
- The effect is stronger, the higher the CO₂ tax. In 2016 the impact is -16% compared to the baseline.
- d Installations operating under a target agreement are not identified. Other policies might have an impact as well, e.g. the buildings program.

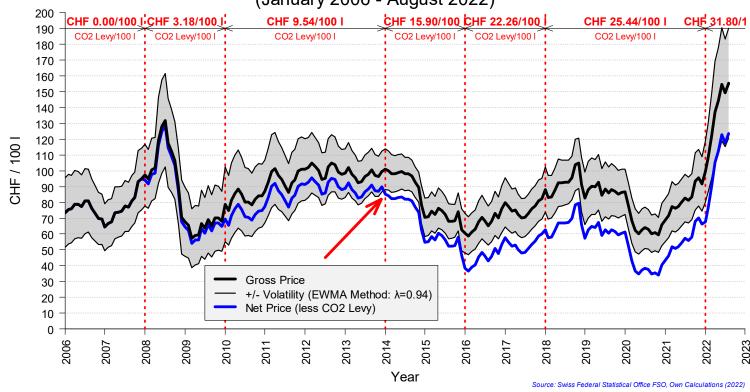
Summary Statistics of Fixed Effects Regression Estimates for the Comparison of the Industry & the Service Sector


Dependent variable:	log(CO₂)	log(CO ₂)
Regressor	Model 2A	Model 2B
Dummy CO₂ Tax CHF 12 (2008, 2009)	-0.00720	0.0339
	(0.0150)	(0.0197)
Dummy CO₂ Tax CHF 36 (2010, 2011, 2012, 2013)	-0.0517*	-0.0401
	(0.0243)	(0.0292)
Dummy CO₂ Tax CHF 60 (2014, 2015)	-0.102*	-0.130**
	(0.0398)	(0.0441)
Dummy CO₂ Tax CHF 84 (2016)	-0.125*	-0.172*
	(0.0586)	(0.0680)
R-squared (within)	0.052	0.063
Sector	Industry	Services
Trimmed upper 1%	YES	YES

Note: Asterisks indicate the significance level at 5% (*) and 1% (**). The standard errors in parentheses are corrected for heteroscedasticity and serial correlation across clusters. Data Source: Swiss Federal Office of Energy.

- The effect of the CO_2 tax in 2016 (CHF 84 per ton of CO_2 eq) is in the industry sector a reduction of 12.5% (= 100 × (-0.125)) compared to the pre-policy period (before 2008).
- The effect of the CO₂ tax in 2016 (CHF 84 per ton of CO₂eq) is in the service sector a reduction of 17.2% (= 100 × (-0.172)) compared to the pre-policy period.

Coefficient Plot for the Comparison of the Industry & the Service Sector based on the previous Regression



- Between 2008 2013 (tax rate ≤ CHF 36/ton), the impact of the tax was slightly higher in the industry sector than in the service sector.
 - → This might be due to more reduction potential in the industry sector.
- Between 2014 2016 (tax rate ≥ CHF 60/ton), the impact of the tax was slightly higher in the service sector than in the industry sector.
 - \rightarrow The impact of the CO₂ levy in the service sector could also be confounded through the contributions of the buildings program.
- However, the differences between the two sectors are not significant (Cls' not overlapping).

Price Chart of Heating Oil extra light (Data source: Federal Statistical Office)

Price Chart of Heating Oil 'extra light' and CO2 Levy, Category: 14'001 - 20'000 I (January 2006 - August 2022)

- Gross price of heating oil extra light: black line.
- Net price (= gross price CO₂ tax) of heating oil extra light: blue line.
- From 2016 onwards, the net price dropped out of the natural price fluctuations of heating oil.
- Consistent with the results of the econometric analysis: The impact of the low CO₂ taxes, in the first years after its introduction, was quite limited.

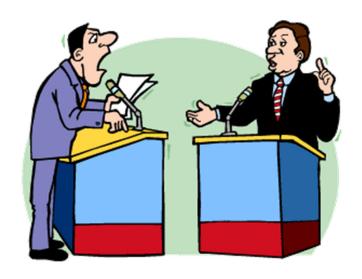
Conclusion and Outlook I

What is the effect of the Swiss climate policy mix on firms energy consumption and CO₂ emissions in the industry and service sector?

- Substantial reductions in the CO₂ emissions for the average firm in the industry and service are possible, especially so when the CO₂ emissions are heavily taxed (levy ≥ CHF 60 / ton CO₂eq).
- The estimation results must be primarily driven by the CO₂ tax. In order to avoid paying the CO₂ tax (the stick) companies must agree to an emissions target in exchange (the carrot).
- However, to test the null-hypothesis, which states that the impact on greenhouse gas emissions mitigations does not differ between the two groups, firms operating under a target agreement must be identified. This is ongoing work as this presentation has shown.

Conclusion and Outlook II

What are the challenges facing such a research question?


- Data collecting from a federal as well as from private institution is extensively time consuming.
- SFOE data is collected by survey on installation level, whereas data from the Energy Agency is on company level:
 - \rightarrow Target agreements versus CO₂ taxes can be disaggregated down to the company level.
 - → The distribution of the reductions among the individual installations belonging to the same company cannot be identified.
 - → However, without linking these two datasets, such information is missing (see previous study).
- Another confounder is the national buildings program.
- Self selection into the target agreement must be must be considered.

Conclusion and Outlook III

There is an ongoing political discussion of eliminating entry restrictions for the participation in the target agreements program and being exempted from the CO₂ tax instead.

Research to quantify these two instruments is necessary!

End of the Presentation

Thank you very much for your attention.

Thomas Leu

