

Presentation EEE 2021

The Federal Programme for Heating Systems Optimisation in Germany – Evaluation methods and intermediate results

11/03/2021

Florin Vondung, Felix Suerkemper, Stefan Thomas Wuppertal Institute for Climate, Environment and Energy Energy Policy Research Unit

Christina Reineck, Christine Wörlen Arepo consult

Programme design and evaluation scope

> Duration: 2016-2021

- Target: replacement of inefficient heating and hot water circulation pumps and heating system optimisation
- > Subsidies: 30% of net investment costs (max. €25,000/site)
- Eligible target groups: private building owners, organisations, municipalities and companies
- > Programme theory based formative and summative evaluation with regard to:
 - Programme achievements
 - Programme impact (Suitability, Causality, Unintended effects)
 - Cost effectiveness

Programme Theory (simplified)

Programme development

Number of registrations / applications over time (until June 2019)

Wuppertal

Institut

Target groups outreach Distribution of approved applications and subsidies

- > Main target group (private building owners) well reached
- > Non-proportional distribution of approved applications and subsidies

Methodology Calculation of energy / emission savings

Bottom-up calculation of CO₂ reduction

per pump replacement

per hydraulic balancing

 $CR_{HA} = \beta * n_{HA} * ES_{HA} * \emptyset F * EF_{W}$

$$CR_p = [[(1-\alpha)*n_p*ES_{pM}] + [\alpha*n_p*ES_p]]*EF_S$$

Whereas

CR_P :	CO_2 reduction through pump replacement	
n_P :	Number of annually promoted pumps	
α:	Share of induced pump replacements in all promoted pumps	
ES_{pM} :	Average electricity savings per pump replacement compared to MEPS	

- *ES*_p: Average electricity savings per pump replacement compared to stock
- *EF_s*: Emission factor electricity ($g CO_2 / kWh$)

Whereas

CR _{HA} :	CO ₂ reduction through hydraulic balancing	
п _{нА} :	Number of annually promoted hydraulic balancing	
β :	Causality of the programme (in % of all promoted hydraulic balancing)	
ES_{pM} :	Average heat energy savings per hydraulic balancing (in kWh/m²/a)	
ØF:	Average heated floor space (in m²)	
EF _W :	Emission factor of Ø heating energy mix (g CO ₂ / kWh)	

Methodology Adjustment for free rider effects (Causality analysis)

- > Based on user survey (n = 13,911)
- > Differentiated for pump replacement and hydraulic balancing

Would you also have implemented the measure(s) without the subsidy?

Significant but expected free rider effect with causality factors of α = 0.4 (pumps) and β = 0.52 (hydraulic balancing)

Programme results Energy savings

Programme results Emission savings

Programme results Cost effectiveness: 5 indicators

#	Indicator	Results
1	Programme administration costs to assess the implementation efficiency	Share of admin costs in total budget 10.58%
2	Programme induced investments / demand effect	 Total gross investments: 308,911,787 € induced investments of 108,184,168 € free rider 160,942,049 € and VAT payments of 39,785,570 €
3	Cost effectiveness from the perspective of programme beneficiaries	Pumps: most cost-effective w/o subsidies; Hydraulic balancing: only cost-effective w/ subsidies
4	Cost-effectiveness from a societal perspective	Benefit-cost-ratio: 1.5 to almost 3 (depending on scenario)
5	Subsidy effectiveness in terms of programme costs compared to energy savings and CO2 emissions reductions	37.29 euro / t CO2 (gross) and 87.69 euro / t CO2 (net); leverage effect: 3

- > HZO Programme cost-effective and worthwhile for both end-users and the economy as a whole
- > Unbalanced distribution of subsidies across target groups and regions
- > Utilisation limited by several factors (capacity constraints in the HVAC sector, assumed bureaucracy of application process and lack of overview of energy efficiency promotion programmes)

Preliminary recommendations:

- > Explicit target group-specific communication strategy
- Training and further education for the HVAC workforce on technical and subsidy-related questions
- > Merging with other promotion programmes (KfW)

Thank you for your attention

Questions?