Life-cycle assessment of US biomass supply and the role of biomass electricity for meeting UK emission objectives

Dr. Paul Meier, Boundless Impact
Andreas van Giezen, Boundless Impact

March 10th, 2021
Boundless Research into Wood-Pellet Biofuel

- Substantiate the requirements needed to deem practices “sustainable”;

- Quantify the carbon intensity, and other environmental impacts, for wood pellet electricity relative to alternative generation technologies; and

- Evaluate the market impacts when wood pellet electricity is deployed at power plants, thereby reducing the grid’s reliance on fossil fuels.
Sustainable Working Forest

● RED II; Wood-pellets shipped to the EU can only be derived from forestland marked for reforestation. Special attention to land use changes.

● Where is the wood coming from? Low-grade trees, trimmings, ‘waste’ from timber industry, etc.

● Third party certification; accountability mechanism for clarifying biomass wood sourcing.
 ○ SFI, FSC, ATFS

● Long-term assessment of forest management practices is critical:
 ○ Many forests have been working forests since 1920s
 ○ Forest area and volume of standing timber over time

● In a sustainably managed system, the carbon that is released as CO2 during biofuel combustion is continuously balanced by CO2 uptake from forest growth and is deemed “carbon neutral.”
Case Study: Electricity produced in the UK using wood pellets from the Southeastern U.S.

- Harvesting & transport from the forest to the pellet production plant
- Raw material handling & emissions during storage
- Pellet production
- Transport from the pellet production plant to the port shipment to the UK
- Energy Conversion*

*Carbon in wood treated as “carbon neutral”.

257 kgCO2e/ton

- Wood Production, 15.77, 6%
- Energy Conversion, 35.78, 13.9%
- Storage + Raw material handling, 38.10, 15%
- Transport, 85.69, 33%
- Processing electricity, 81.67, 32%
Electricity generated using wind turbines, solar photovoltaic, and wood pellet-based biomass emits far less GHG emissions per kilowatt-hour than coal.

A 1:1 replacement of coal electricity would yield an
- 86% emission reduction using wood pellets, a
- 92% reduction using solar PV
- 97% reduction using wind turbines.
Electricity generated using wind turbines, solar photovoltaic, and wood pellet-based biomass emits far less GHG emissions per kilowatt-hour than coal.

A 1:1 replacement of coal electricity would yield an
- 86% emission reduction using wood pellets, a
- 92% reduction using solar PV
- 97% reduction using wind turbines.

Carbon intensity for wood-pellet biomass case study relative to electricity generation alternatives.
Electricity generated using wind turbines, solar photovoltaic, and wood pellet-based biomass emits significantly less GHG emissions per kilowatt-hour than natural gas.

- A 1:1 replacement of natural gas electricity would yield an
 - 68% emission reduction using wood pellets, a
 - 82% reduction using solar PV
 - 94% reduction using wind turbines.
Carbon-Cycle Considerations

Basis for carbon-neutral assumption:
- net increases in forest carbon stocks are occurring for the geographic area of study
- raw materials are sourced from mill residues and forest-harvest by-products,
- biomass production is not derived from the conversion of forest land to other non-forest uses.

A separate but related issue is the timing of carbon offsets during LCA accounting. Whether they be:
- Credited as a carbon offset during forest growth.
- Not accrued until post combustion (carbon debt).

A low-carbon intensity biofuel does not emit more carbon than coal on a long-term basis, however, not crediting biomass for carbon-uptake during growth increases the time required to account for emission savings.
Power sector modeling to evaluate CO$_2$ reductions from expanded wood-pellet electricity.

UK Scenarios
Increase wood-pellet biofuels along with wind and solar generation resources to accelerate emissions savings to meet a 59% reduction goal by 2030.

Japan Scenarios
Convert existing coal-powered facilities to use wood pellets as an inexpensive “emissions hedge” against the risk of nuclear plants not re-opening.
Case study: Increasing U.K. power sector renewables to 59% by 2030.

UK1 Scenario - Uniformly increase (approximately 80%) wind, solar and biomass electricity contributions from current levels by 2030.

UK2 Scenario - Increasing wind and solar only shows higher emission levels.

UK3 - Same as UK1 scenario, but with coal plant retirement.
Case study: Variations on Japan’s strategic energy plan by 2030.

J1 Scenario - Restart nuclear units to achieve 22% of generation mix. Increase renewables to 29% of supply by 2030.

J2 Scenario - Political and technical challenges limit nuclear supply to 16.5% of generation mix.

J3 - Convert coal-fired power plants to use wood pellets and increasing the total biofuel contribution to the power sector from 3.7% to 10.3%.
Deep decarbonization - benefits from “all of the above” approach

- Relying exclusively on intermittent resources such as solar and wind for deep decarbonization requires increasingly dramatic reliance on energy storage (see image).
- While natural gas power often has excellent load balancing capabilities, its associated GHG intensity is significant.
- Wood-pellet biomass generation can substitute directly for coal with relatively low capital cost required to convert an existing coal facility.
- Wood-pellet electricity is “dispatchable”, providing a low emission alternative to balance the variable power supply from other intermittent renewable resources.

Q & A

www.BoundlessImpact.net