Evolving Energy Efficiency Programs to Focus on CO2 Reduction:

Implications for Program Evaluation

Energy Evaluation Asia Pacific

Bangkok, Thailand

OCTOBER 30-31, 2019

AGENDA

- Overview
- Historical Perspective
- 2019
- GHG Reduction Programs
- Reflection

Energy Program Evaluation exists to support clean energy objectives.

To stem the effects of climate change, the focus is shifting to address GHG reductions.

Historical	
Perspective	

Energy programs in the US are largely regulatory-driven

EVOLUTION OF ENERGY POLICY OVER TIME						
:	1970s	1980s	1990 s	2000s	2010 s	
С	onserve	Avoid	Competitive	Grid	Greening	
	Energy	Building New	Markets	Reliability	of Supply	
		(Nuclear)				
		Plants				

Program Evaluation has also evolved

Fast Forward to 2019

Climate change is REAL

Energy sector is a significant contributor

Electricity production is a significant contributor of GHG emissions

EMERGING RATIONALE:

Achieve Reductions in GHG Emissions

Efficiency, Yes, but ... GHG reductions are MOST important

Focus is on utilizing all the green energy available.

Grid management support through EE, DR, Electrification, Storage

Provide capacity at very specific times of day and at very specific locations on the grid. EXAMPLE: 2019 Clean Energy Optimization Pilot (CEOP)

PARTNERSHIPS WITH CALIFORNIA

UNIVERSITY SYSTEMS:

University of California State California University

KEY PERFORMANCE METRIC:

- GHG Reductions
- GHG reductions: whole-campus level

APPROACHES MAY INCLUDE:

• EE, DR, Cogen, renewables, clean transport, energy storage

CUSTOMER PARTICIPATION:

- Customer flexibility
- Customer decides how to achieve reductions!

CEOP Program & Evaluation Design

PROGRAM GOAL

Outcomes focused on GHG reductions

BENEFITS

- Reduces silo'ing
- Allows electrification
- Customer empowered
- Scalable

APPROACH

Pay for Performance: Moving away from measure / project specific

incentives and approvals

KEY EVALUATION ELEMENTS:

- Benefits = reduced emissions
- Evaluation: IPMVP protocols
- Normalized metered energy consumption analysis techniques
- Process evaluation: optimize design, test scalability

Stepping Back... Fundamental Challenges Ahead

- As these programs change, how does the role of program evaluation change?
- How can we ensure that the efforts of program evaluation are relevant?

Are we framing the correct evaluation

questions?

Summary

- Traditional utility-sponsored EE programs will continue
- The urgent need for GHG reductions is resulting in a new portfolio of energy programs
- Evaluation will be serving new and different needs.

For more information contact: **Robert Bordner** Brett Close, Ph.D.

Seattle, Washington

