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ABSTRACT 
 

This paper characterizes and assesses the major sources of uncertainty in energy 
efficiency (EE) potential and planning studies and describes how an important subset of 
those uncertainties can be reduced by leveraging timely, evaluation-based data to yield 
up-to-date, observation-based estimates of measure saturations, measure costs and 
savings, and customer adoption behavior. We then outline a few of the key challenges 
associated with building more active and direct linkages between program evaluations 
and EE potential and planning studies, such as timeliness in a dynamic world and 
balancing evaluation priorities with the needs of planning studies. Finally, this paper 
offers a roadmap of initiatives that can be pursued in the near-term to better leverage 
current evaluation activities to improve planning studies in meaningful and important 
ways.   
 
Introduction 

 
Energy efficiency potential studies are experiencing a new wave of attention in the 

US and around the world as utilities and policy makers race to establish programs and 
savings targets sufficient to meet the challenges of a climate-constrained world. Indeed, 
potential studies are now taking center stage in policy and resource planning activities 
that go well beyond the scope and objectives of the first wave of utility-sponsored 
planning studies conducted in the 1990s. Given the increasing importance, scope, and 
frequency of potential studies in today’s world, it is critical to assess the quality of the 
tools and key data used in potential studies, identify key uncertainties, and implement 
strategies to reduce these uncertainties on an ongoing basis going forward. 

In many ways, program evaluations are mirror images of potential studies. In 
order to develop ex-post savings estimates from a particular measure, one must develop 
baseline technology data, estimate eligible customer populations, and estimate program 
participation rates. Potential studies endeavor to estimate similar quantities but in an ex-
ante fashion. Importantly, however, potential studies face the continual challenge of 
trying to accurately characterize measure-level technology and participation data across 
the entire spectrum of EE technologies and programs in order to project future 
participation and savings. As a result, potential studies face a host of uncertainties, 
particularly with respect to technology markets and customer adoption behaviors that are 
very dynamic in nature. Program evaluations are perfectly positioned to fill some of these 
key data gaps and hold the promise of being an important vehicle to reduce key 
uncertainties in potential studies on a continual and ongoing basis, if explicitly designed 
to do so. 

 
Research Objectives 

 
Drawing from the extensive experience of the authors in conducting program 

evaluations and potential studies over the past two decades, this paper will characterize 



and assess the sources of uncertainty in energy efficiency forecasting studies and identify 
the subset of those uncertainties that can be best addressed by leveraging timely, 
evaluation-based data. This paper will then assess and describe the key challenges 
associated with actively linking program evaluations to forecasting studies. Finally, this 
paper will provide a roadmap and recommendations for addressing these key challenges 
and promoting more active and ongoing linkages between program evaluations and EE 
potential and planning studies. 

 
Brief History and Basics of EE Potential Studies 

 
EE potential studies were popular throughout the utility industry from the late 

1980s through the mid-1990s. This period coincided with the advent of what was called 
least-cost or integrated resource planning. EE potential studies became one of the primary 
means of characterizing the resource availability and value of energy efficiency within the 
overall resource planning process. In this section, we provide a brief overview of the 
definitions and conceptual frameworks typically used in potential studies and describe the 
main input data and analytic elements common to all potential studies. 
 
Definitions and Conceptual Framework 
 

Like any resource, there are a number of ways in which the EE resource can be 
estimated and characterized. Definitions of EE potential are in similar to definitions of 
potential developed for finite fossil fuel resources like coal, oil, and natural gas, where 
resources are typically characterized along two primary dimensions: the degree of 
geologic certainty with which resources may be found and the likelihood that extraction 
of the resource will be economic. Somewhat analogously, EE planning studies have 
defined several different types of energy efficiency potential. Among the most common 
types of potential defined are technical, economic, achievable, program, and naturally-
occurring potential. These potentials are shown conceptually in Figure 1 and described 
below.  
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Figure 1. Conceptual relationship among EE potential definitions 

 



Technical potential is often defined as the complete and instantaneous penetration 
of all EE measures analyzed in applications where they were deemed technically feasible 
from an engineering perspective. Total technical potential is developed from bottom-up 
estimates of the technical potential of individual measures as they are applied to discrete 
market segments (e.g. specific industries or types of residential or commercial buildings).  

Economic potential is typically refers to the technical potential of those EE 
measures that are cost effective when compared to either supply-side alternatives or the 
price of energy. Economic potential takes into account the fact that many EE measures 
cost more to purchase initially than do their standard-efficiency counterparts. The 
incremental costs of each efficiency measure are compared to the savings delivered by the 
measure to produce estimates of energy savings per unit of additional cost. These 
estimates of EE resource costs are then compared to estimates of other resources such as 
building and operating new power plants. 

Achievable potential refers to the amount of savings that would occur in response 
to specific levels of program funding and measure incentive levels over time. Because 
achievable potential will vary significantly as a function of the specific type and level of 
measure incentives and program marketing applied, it is usually developed for multiple, 
specific program funding scenarios (e.g. “business as usual” funding, “increased 
funding”, and “maximum funding”) and is thus sometimes referred to as achievable 
potential, market potential, or program potential.  

Naturally-occurring potential refers to the amount of savings estimated to occur 
as a result of normal market forces over time, that is, in the absence of any utility or 
governmental intervention going forward. In this respect, net savings associated with 
achievable potential are savings that are projected beyond those that would occur 
naturally in the absence of any market intervention.  

 
Main Input Data and Analytic Elements of EE Potential Studies 
 

Functionally, while potential studies conducted by different investigators will 
differ in particular aspects of data development and model specification, most 
comprehensive potential studies share a common set of input data and analytic elements. 
In this section, we provide a brief review and description of each of these common 
elements. 

 
Baseline data on end-use energy consumption. Most studies of EE potential 

start with an analysis of current energy use at a level relevant to proposed program 
interventions in a given service territory. This analysis involves constructing a bottom-up 
characterization of energy use at the end-use and technology level in the particular market 
segments of interest, e.g. existing single-family homes, office buildings, grocery stores, or 
metal fabrication facilities. The key data necessary to establish the bottom-up modeling 
baselines required for energy efficiency potential studies are: 1) end-use technology 
saturations, 2) end-use technology densities, 3) end-use energy intensities, and 4) end-use 
load shapes. Residential baseline analyses also requires data on the number of households 
by building type (e.g. single-family detached homes vs. multi-family buildings) in order 
to scale and calibrate residential end-use estimates to total residential sales and peak 
demand. Similarly, commercial baseline analyses requires data on commercial floor space 
by building type (e.g. offices, retail stores, hospitals, or schools) in order to scale and 
calibrate commercial end-use estimates to total commercial sales and peak demand. Table 
1 provides a summary of the key types of baseline data required for potential studies and 
the common sources of each type of baseline data. 



 
Table 1. Summary of key baseline data required for potential studies 

Data Type Units Common Sources 
Units of consumption • Number of households or kWh sale 

(residential) 
• Square feet of floor space or kWh sales 

(commercial) 
• kWh sales (industrial) 

• Utility billing data 
• CIS data 
• Regulatory commissions 

End-use technology 
saturation 

• Share of households with technology 
installed (residential) 

• Share of floor space with technology 
installed (commercial) 

• Share of load with technology installed 
(industrial) 

• Self-report surveys 
• On-site surveys 
• Market tracking studies 

End-use technology 
density 

• Cost units per consumption unit (e.g., 
lamps/home, tons cooling/square foot, 
motor horsepower/kWh) 

• Self-report surveys 
• On-site surveys 

End-use energy 
intensity 

• Annual kWh/household (residential) 
• Annual kWh/square foot (commercial) 
• None or kWh/unit of production or 

kWh/value of shipments (industrial) 

• Building simulations 
• Engineering estimates 
• End-use metering studies 
• Utility load research 
• Econometric studies (e.g. 

conditional demand analysis) 
End-use load shapes • Distribution of end-use energy 

consumption across times of the day, 
days of the week, and season 

• Building simulations 
• End-use metering studies 
• Utility load research 

 
Since the results of the baseline analysis determine the amount of energy use and 

peak demand that can ultimately be affected by the set of EE measures being considered, 
the quality of both the primary data and the data development process associated with 
estimates of baseline end-use consumption greatly influences the credibility and accuracy 
of efficiency potential forecasts. 

 
Measure data. Along with baseline data on current energy use, the other key 

input data required for potential studies are data that describe the EE measures being 
considered in the analysis. The key measure data required are measure costs, measure 
savings, measure feasibility, and measure saturation. Measure costs are expressed as 
either full costs or incremental costs, depending on whether the measure is a retrofit (full 
cost, including any labor costs associated with installation) or replace-on-burnout 
measure (incremental first cost, relative to standard efficiency replacement). In many 
studies, measure costs are also normalized to “cost units” in order to allow reasonable 
scaling of measure costs across segments that have different technology densities and 
equipment capacities (e.g. $/ton of cooling capacity). Compared to savings, measure costs 
have not been empirically well studied throughout the history of the energy efficiency 
field. Measure savings can be expressed as percentage savings relative to the base 
technology or in terms of kWh, kW, or therms. Measure saturation is defined as the share 
of total consumption units (e.g. households or commercial floor space) where a given 
measure is already installed. Measure feasibility is typically defined as the share of 
households, commercial floor space, or industrial load where a given measure is 
technically and practically feasible. Examples of barriers that limit measure feasibility 
include color requirements that limit the use CFLs as replacements for incandescent 
lamps and the use of constant-volume heating, ventilation, and air conditioning (HVAC) 
systems that limit the use of variable frequency drives with fan motors. Together, these 
two variables serve to avoid gross overestimates of efficiency potential by explicitly 



taking into account practical and technical barriers to particular measures and limiting the 
analysis to the share of the market where given efficiency measures have not yet been 
installed. Table 2 provides a summary of the key measure data required for potential 
studies and lists the common sources of each type of measure data. 

 
Table 2. Summary of key measure data required for potential studies 

Data Type Units Common Sources 
Measure costs • $/cost unit (e.g. per lamp, per ton of 

cooling capacity, per square foot of 
insulation) 

• Measure cost studies 
• Market tracking studies 

Measure savings • Savings relative to base case 
technology at equivalent level of service 

• Measure impact evaluations 
(e.g. billing analysis, M&V) 

• Engineering analysis 
Measure saturation • % of households with measure installed 

(residential) 
• % of floor space with measure installed 

(commercial) 
• % of load with measure installed 

(industrial) 

• Self-report surveys 
• On-site surveys 
• Market tracking studies 

(including supply-side analyses) 

Measure feasibility • % of eligible households where measure 
is technically and practically feasible 
(residential) 

• % of eligible floor space where measure 
is technically and practically feasible 
(commercial) 

• % of eligible load where measure is 
technically and practically feasible 
(industrial) 

• Engineering judgment 

 
Interacting baseline estimates of end-use consumption with data on measure 

savings, measure feasibility, and current measure saturation produces estimates of 
technical potential. Figure 3 shows an example of how baseline end-use and measure data 
interact to produce estimates of technical electric energy savings potential in the 
commercial sector. Figure 2 shows that, as is the case with baseline consumption data, the 
quality of both the primary data and the data development process associated with the 
characterization of energy efficiency measures greatly influences the credibility and 
accuracy of efficiency potential forecasts. 
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Figure 2. Example calculation of the technical potential for electric energy savings in 
commercial buildings 
 

Economic data. The key economic inputs utilized in potential forecasts are 
summarized in Table 3 and include retail electricity and natural gas rates, avoided 
electricity costs, discount rates, and inflation rates. Together with measure costs and 
savings data, these data represent the key inputs to the cost-benefit calculations used in 
potential studies to estimate economic potential and model measure adoption. 
 



Table 3. Summary of key economic data required for potential studies 

Data Type Units Common Sources 
Retail energy rates • $/kWh (electric) 

• $/therm (gas) 

Avoided generation energy costs • $/kWh 
Avoided generation capacity costs 
Avoided T&D capacity costs 

• $/kW-yr 

Environmental adder • $/kWh 
Utility discount rate 
Inflation rate 
Consumer discount rate 

• %/yr 

• Utility sales and revenue data 
• Utility and regulatory forecasts 

 
Cost-effectiveness calculations. To estimate economic potential, it is necessary 

to develop a method by which it can be determined that a measure or program is cost 
effective. Most studies use the total resource cost (TRC) test to assess cost effectiveness, 
which is a form of societal benefit-cost test that measures the net costs of a demand-side 
management program as a resource option based on the total costs of the program, 
including both the participants’ and the utility’s costs. Other tests that are sometimes used 
in analyses of program cost-effectiveness include the utility cost test (UTC), the ratepayer 
impact measure (RIM) test, and participant tests.1  
 

Adoption modeling. Estimating technical and economic potentials are necessary 
steps in the potential forecasting process from which important information can be 
obtained. However, the end goal of the process is to better understand how much of the 
efficiency potential can be captured in programs, whether it would be cost-effective to 
increase program spending, and how program costs can be expected to change in response 
to measure adoption over time.  

Whether as a result of natural market forces or program intervention, the rate at 
which measures are adopted is typically modeled as a function of several distinct factors, 
including but not limited to: 1) the availability of the adoption opportunity as a function 
of capital equipment turnover rates and changes in building stock over time, as well as 
market availability over time; 2) customer awareness of the efficiency measure; 3) the 
cost-effectiveness of the efficiency measure from the customer perspective, and 4) market 
barriers associated with the efficiency measure. 

Simulating availability rates requires a stock accounting algorithm that handles 
capital stock turnover and stock decay over the study period (due to both measure 
adoption and decay in the building stock), depending on whether the measure is a retrofit, 
replace-on-burnout, or new construction measure. Current measure awareness levels can 
be partially derived from market assessment studies and self-report surveys, but in cases 
where such data do not exist, analyst judgment is often required. Changes in measure 
awareness going forward can be modeled in several different ways. For example, 
incremental increases in awareness can be modeled as a constant growth rate or a direct 
function of administrative and/or marketing budgets over time. It is also possible to 
differentiate the “effectiveness” of different marketing approaches on customer awareness 
(e.g. custom C&I programs versus mass market programs) and explicitly account for 
different rates of information retention and awareness decay over time. 

                                                 
1 For a more detailed overview and discussion of these and other cost-effectiveness tests used for planning 

and evaluation of efficiency programs, see CPUC 2001. 



The final and most critical step in adoption modeling is to estimate the fraction of 
the eligible, available, and aware market that adopts each efficiency measure in each year 
of the study period. Compared with all the other analytic elements involved in potential 
studies, this dimension of potential forecasting remains the area of greatest challenge and 
least consensus among analysts and modelers. As such, analysts have developed a variety 
of specifications for the adoption function itself. Despite this diversity, however, most 
adoption models currently used in potential studies estimate adoption as a function of at 
least two key factors – the cost-effectiveness of the measure (from the customer 
perspective) and the market barriers associated with the measure. Where adoption models 
differ is exactly how these factors are represented and the degree and manner in which 
they ultimately impact customer adoption (e.g. the sensitivity of customer adoption to 
changes in measure incentives, marketing, etc).  

 
Sources of Uncertainty in EE Potential Forecasting 
 

There are two principal classes of uncertainty underlying the results of EE 
potential studies. The first area is uncertainty associated with estimates of the current 
characteristics of end-use electricity consumption and energy efficiency measure data 
(hereafter, “current market” uncertainty). The second area concerns estimates of the 
future potential for energy efficiency, which is affected by the uncertainty in the first area, 
as well as uncertainty in future energy prices and electric load forecasts, changes in 
market and energy efficiency measure characteristics over time, and forecasts of customer 
adoption of measures as a function of program interventions, among other factors 
(hereafter, “forecast” uncertainty). While there is considerable overlap in the underlying 
data associated with both types of uncertainty, it is useful to separate these classes of 
uncertainty since the types of research necessary to reduce these two types of 
uncertainties are significantly different. 

 
Current Market Uncertainty 
 

Estimating EE potential involves a process of modeling the substitution of 
existing energy-using equipment and systems with energy-efficient equipment and 
systems. As such, this process starts with estimates of current equipment characteristics 
and energy use by end use and market segment, i.e. baseline end-use data. These baseline 
data typically are provided as inputs to energy efficiency potential studies and are, in the 
best of cases, developed from up-to-date and statistically accurate studies that involve 
detailed collection of technology market shares and comprehensive modeling of end-use 
energy consumption and peak demand. When these baseline data are absent, outdated, or 
inaccurate, the uncertainty in estimates of current equipment shares and associated 
consumption and peak demand directly impacts the accuracy of energy efficiency 
potential estimates since energy efficiency potential can vary significantly by equipment 
type and market segment.  

Current market uncertainty is also associated with uncertainties in measure data. 
For measure costs and savings, uncertainties exist to varying degrees across individual 
technologies. In general, new measures (e.g., those that have been on the market for two 
years or less) have somewhat greater uncertainty in costs and savings than measures that 
have been on the market for longer periods (e.g., 3 years or more). Dynamic markets for 
existing energy efficiency measures can also lead to substantial declines in incremental 
measure costs, making it difficult to maintain up-to-date information. High-efficiency 
lighting technologies are prime examples of dynamic technology markets.  



Measure feasibilities can also represent significant sources of current market 
uncertainty, since they are generally derived from engineering judgment and experience, 
rather than comprehensive sets of observed data. However, the uncertainty of feasibility 
estimates again varies significantly across measures and tends to be lowest among the 
measures that make the largest contributions to technical, economic, and achievable 
potential (e.g. CFLs, premium T8 lamps, high-efficiency residential AC and commercial 
packaged AC). Measures whose current feasibility estimates are most uncertain include 
evaporative coolers, whole-house fans, tankless water heaters, perimeter dimming, 
variable frequency drive controls, energy management systems, and commercial cool 
roofs. 

The most significant uncertainties in the measure-level data, however, are 
associated with the measure saturation data, particularly those derived from self-report 
customer surveys. While self-report surveys can produce fairly accurate saturation 
estimates for certain types of measures (e.g. CFLs, ENERGY STAR appliances), self-
reported saturations of many measures suffer from self-report bias and high levels of 
misreporting. This is particularly true with residential building shell measures such as 
floor and wall insulation where most renters and indeed many homeowners lack the 
information necessary to give accurate responses. 

Measure useful lives are another important area of uncertainty in measure data. 
Useful life affects the persistence of savings, that is, the number of years over which the 
savings will occur. The estimated number of years of savings is an important input to the 
benefit-cost analysis in EE potential studies. Over- or underestimating useful lives will 
concomitantly over- or underestimate the measure’s benefit-cost ratio. Useful life 
uncertainty includes both uncertainties in the percent of measures that will be retained by 
customers within a short period after installation (often referred to as short-term retention) 
and the length of time the measures will last across all customers on average (usually 
referred to as average effective useful life). Short-term retention rates are sometimes less 
than one for measures that either: 1) have a high early failure rate, 2) are immediately 
disliked by customers (perhaps because they do not believe the service level is equivalent 
to the less-efficient alternative), or 3) cease to operate because of a major change in the 
customer’s business (e.g., the business shuts down and no new tenant has arrived to 
utilize the equipment). Short-term retention rates are typically quite high for most 
measures. However, some measures have more risk of retention rate reduction compared 
to other measures. For example, a CFL applied in a poor application or a retro-
commissioning controls measure that can be easily overwritten by a building operator that 
prefers the convenience of the previous control strategy. Average effective useful life is 
affected by the physical life of the measure (which can be measured and estimated in 
terms of a survival function) and longer-term changes in customer facilities that may lead 
to removal of measures before the end of their physical life (again, primarily changes in 
physical equipment or control strategies associated with tenant changes and renovation 
cycles).  
 
Forecast Uncertainty 
 

Forecasts of EE potential are directly affected by current market uncertainty. In 
any forecasting process, one wants to begin with as accurate an assessment of current 
conditions as possible; errors in estimates of current conditions are otherwise carried 
forward and exacerbated. However, even with perfect data on current market conditions, 
forecasts are subject to their own uncertainties by their very nature. The key areas of 
forecast uncertainty include, but are not limited to, the following: 1) uncertainty in future 



levels of end-use energy service demand, 2) uncertainty in future cost-effectiveness of 
measures, 3) uncertainty in future customer adoption preferences and behavior, and 4) 
uncertainty in interactions between current measure portfolios with new measures, future 
codes and standards, and other future demand-side management (DSM) programs and 
initiatives. Each of these four areas of forecast uncertainty is discussed in more detail 
below. 

Embedded in all forecasts of EE potential are assumptions about the future levels 
(and relative shares) of end-use energy service demand, e.g. the volume and temperature 
of heated space in homes. These assumptions are usually designed to be internally 
consistent, at least in aggregate, with those predicted in utility (or government agency) 
load forecasts. However, since EE potential varies considerably across end uses, building 
types, and sectors, deviations from the predicted levels of future end-use energy service 
demand can significantly affect the size, character, and cost-effectiveness of the EE 
resource.  

The cost-effectiveness of EE measures, whether from a societal, utility, and 
customer perspective, is determined primarily by the cost and savings characteristics of 
the measures themselves. Changes in these measure characteristics over time, therefore, 
directly impact the cost-effectiveness outcome for any given measure. In potential 
forecasts, such changes in cost-effectiveness can impact the calculation of both economic 
potential (by changing the TRC ratio) and achievable potential (by changing the benefit-
cost ratio to the customer and the associated adoption rates). While the probability of 
significant changes in measure cost and savings over 10 years (the forecast horizons of 
most potential studies) is small, the same is not true for a host of newer technologies. 
CFLs are a perfect case in point, having experienced dramatic cost decreases over the past 
10 years (Itron, 2006). Going forward, similar cost declines are expected for LED lighting 
technologies and other high-efficiency “emerging” technologies. The unpredictability of 
such changes in measure characteristics is therefore a significant source of forecast 
uncertainty in any EE potential forecasting study.  

It should be noted, however, that changes in measure cost and savings 
characteristics are not the only factors that impact measure cost-effectiveness. Future 
energy prices carry their own set of uncertainties associated with future fuel costs, 
generation technology costs, capacity costs (particularly in constrained areas), and the 
value of environmental externalities. Since energy prices directly influence the cost-
effectiveness calculation for efficiency measures, the assumed future trends in energy 
prices therefore directly impact the results of potential studies, and uncertainties in future 
energy prices contribute directly to the overall uncertainty of the potential forecast results.  

In the absence of changes to the empirical cost-effectiveness of efficiency 
measures going forward, customer adoption of efficiency measures can also change as a 
result of changes to program design and delivery, changes in customer awareness, and/or 
changes in customer preferences. While changes in program design can, in theory, be 
accounted for directly in potential forecasts, given that the utility can accurately anticipate 
such changes in its future offerings. However, such changes in program design typically 
occur as the result of lessons learned from ex-post evaluations and not from ex-ante 
planning activities. Even if such program design changes could be accurately predicted by 
program planners, customer adoption preferences are also affected by a host of cultural 
and behavioral factors that are difficult to predict by nature, such as customer acceptance 
of new technologies, customer awareness of energy efficiency measures and programs, 
and public perceptions about climate change, to name a few.  

Finally, there are a host of policy and program interactions that also introduce 
significant forecast uncertainty, particularly from the perspective of utility program 



planners. For example, any time building energy codes or equipment efficiency standards 
are strengthened or expanded, the result is often a relative decrease in the achievable EE 
resource available to be captured by voluntary, incentive-based utility programs going 
forward over the short term, especially in the absence of an influx of new, cost-effective 
efficiency measures and technologies. As state and federal governments move towards 
more and more aggressive trajectories for codes and standards, it is therefore becoming 
increasingly important to account for these interactions in utility program and resource 
planning studies. However, it is difficult to accurately predict both the scope and timing 
of future codes and standards, especially over the longer term. Conversely, EE potential 
can also interact in positive ways with other programs and initiatives, such as policies to 
promote advanced metering infrastructure (AMI). Pilot studies of homes provided with 
real-time information on energy consumption and costs suggest that access to such 
information can significantly increase energy conservation and the adoption of EE 
measures (Faruqi, Sergici & Sharif 2009). However, the magnitude of these observed 
effects varies tremendously across the limited number of studies conducted to date (3-
13%), and thus the true impact of AMI initiatives on longer-term EE potential remains 
highly uncertain. 

 
The Role of Evaluation-based Data in EE Planning Studies 

 
Given our assessment of the key uncertainties in current estimates of technical, 

economic, and achievable potential, below we present and describe the subset of those 
uncertainties that can be reduced by leveraging timely, evaluation-based data and the 
challenges associated with building more active and meaningful linkages between 
program evaluations to EE potential and planning studies. 
 
Measure saturation estimates 
 

As discussed previously, the most significant uncertainties associated with current 
estimates of technical and economic potential are due to uncertainties in measure 
saturation estimates. Self-report surveys often play a central role in program evaluation 
activities due to their relatively low cost and large sample sizes and can be easily 
designed to estimate measure saturation levels. Increasingly, self-report surveys 
conducted for program evaluations are being augmented by on-site verification activities 
in order to reduce self-report bias and increase the accuracy of evaluation results. For 
technologies and measures most subject to self-report bias (e.g. wall and ceiling 
insulation), the results of such on-site verification studies can be leveraged directly to 
help reduce current market uncertainty in EE potential and planning studies. 

Audit programs also represent a largely untapped source of observation-based 
measure saturation estimates. Many utilities and government agencies conduct home and 
business energy audits as part of stand-alone audit programs or prerequisites for custom 
rebate programs, but the data from these audits are often not integrated into larger 
baseline or measure data development efforts. Moreover, evaluations of audit programs 
often focus on determining the energy savings impacts of those programs, rather than 
constructing a systematic, detailed characterization of the customer base. In this sense, if 
audit programs or evaluations of audit programs can be designed to establish systematic 
reporting of the presence of efficiency measures and standardized, central databases of 
audit information, these activities could yield a wealth of on-going, observation-based 
measure saturation estimates that would greatly reduce the current market uncertainty of 
EE potential and planning studies. It should be noted, however, that measure saturation 



estimates derived from audit data are subject to self-selection bias and would likely need 
to be validated by periodic survey studies. 

 
Measure cost and savings estimates 

 
For measures whose costs and savings are either difficult to accurately quantify by 

nature (industrial measures, commercial HVAC) or are particularly dynamic (e.g. 
lighting), uncertainties in their measure costs and savings estimates is also an important 
source of overall uncertainty in EE planning studies. As part of the application process for 
program rebates, customers and/or installers are often required to submit unit price 
information for eligible energy efficiency measures. Such applications are a natural, low 
cost, and on-going source of up-to-date measure cost data and can be used to update and 
refine incremental cost estimates, benefit-cost analyses, and other metrics relevant to 
tracking economic potential, estimating future program participation, and other program 
planning issues. In particular, applications for custom retrofit programs could serve as an 
important source of measure cost data for commercial lighting and HVAC measures that 
are generally procured for customers by contractors. As in the case of audit data, 
increasing the scope of evaluation activities to include the estimation and reporting of 
contractor-reported, average measure costs based on program applications could yield a 
wealth of up-to-date measure cost data, particularly in the commercial and industrial 
sectors, that would greatly reduce the uncertainty in EE potential and planning studies. 

While the vast majority of current efficiency programs and portfolios are based 
upon individual measures, going forward it is likely that more and more cost-effective 
opportunities for energy savings will come from integrating building designs with 
particular packages of technology choices rather than from individual technologies (e.g. 
passive lighting designs matched with advanced lighting controls). Such integrated 
approaches are often afforded only limited analysis in EE potential studies and/or 
analyses based exclusively on building simulation results. As such, potential estimates for 
integrated measures often suffer from aggregation bias in measure cost data and 
significant uncertainty in measure savings data due to a severe lack of real-world, 
evaluation-based impact estimates with which to benchmark energy and peak demand 
savings derived from building simulation models. In this sense, designing evaluations to 
explicitly assess the costs and savings of such integrated measures implemented through 
custom retrofit programs or new construction programs (despite their relatively minor 
role in most program portfolios) would greatly reduce the uncertainties in current cost and 
savings estimates and improve the quality and defensibility of downstream potential 
estimates. 
 
Customer adoption behavior 

 
The adoption dynamics in most EE potential forecasting models are based 

primarily on the results of a very limited number of customer adoption studies, many of 
which were conducted in the mid-1990s. The lack of more recent data on customer 
behavior relative to the adoption of EE measures is one of the most significant sources of 
forecast uncertainty in current estimates of achievable potential. As such, developing 
revised data on customer adoption behavior relative to various measure incentive levels at 
a level that is reflective of the scope and structure programs currently in utility program 
portfolios represents an important opportunity to reduce a significant source of forecast 
uncertainty going forward. 



Although conjoint and double-bounded choice studies have been the traditional 
means to quantify customer adoption preferences in the past, an alternative approach to 
developing revised and relevant data on customer behavior would be to leverage the 
diversity of current programs being offered across different service territories and regions 
as large scale “natural experiments”, the results of which could feed into revealed 
preference analyses. For example, there are a multitude of local government programs in 
California that offer similar measures but at a variety of incentive levels and with a 
variety of delivery mechanisms. Importantly, these programs have also had varying levels 
of success in terms of customer adoption rates. Given enough information on program 
structures and activities and the customers who have adopted measures through these 
programs, one could leverage the subtle differences in measure incentives and adoptions 
that exist to conduct revealed preference analyses in a uniform framework. Such an 
approach would require program administrators and implementers to actively record and 
track customer adoption data for their respective programs in a manner which allows the 
data to be compiled and analyzed in a uniform revealed preferences framework. The 
primary advantage of this approach compared to traditional conjoint studies is that it 
would enable customer adoption to be analyzed for many individual measures 
simultaneously and on an on-going basis. One potential disadvantage in using behavioral 
data from “natural experiments” is the increased potential for spurious correlation that 
comes from lack of strict study controls. 

Another alternative approach for collecting and developing customer behavior 
data on an on-going basis is to integrate follow-up procedures for all customers that have 
participated in an energy audit, either through audit-only programs or as a prerequisite for 
custom retrofit programs. Integrating such follow-up procedures either into the program 
design itself or the evaluation of those programs and systematically recording and 
tracking related measure adoption decisions would provide a wealth of valuable 
quantitative information on customer adoption preferences that would not only help 
optimize portfolio and program design over the near term but also vastly improve the 
accuracy and defensibility of longer-term efficiency adoption forecasts on an on-going 
basis. As in the case of using audit data to develop measure saturation estimates, 
however, it should be noted that customer adoption behavior data developed from audit 
follow-ups is likely subject self-selection bias and would likely need to be periodically 
validated by more controlled discrete choice studies. 

 
Challenges with Integrating Evaluations and Planning Studies 

 
Building the types of explicitly-designed linkages between program evaluations 

and EE planning studies described above, however logical they appear, faces a number of 
distinct challenges. Key challenges include, but are not limited to, the following: 1) 
timeliness in a dynamic world, 2) whole-market versus utility program perspectives, 3) 
balancing evaluation priorities and resources with planning study needs. Below we 
describe each of these key challenges in more detail. 

 
Timeliness in a dynamic world. Program evaluations are typically time-intensive 

processes. Programs are operated on 2-3 year cycles, and ex-post evaluations can take 6-
12 months, sometimes longer, to complete following the end of a program cycle. Final 
evaluation results, therefore, often reflect the market conditions from 3-4 years previous. 
As described earlier, an important source of current market uncertainty in EE planning 
studies is the lack of up-to-date baseline and/or measure data, particularly in the case of 
technology markets that have proven to be particularly dynamic over short time periods 



(e.g. lighting). In this sense, one of the key challenges in effectively leveraging 
evaluation-based data for EE planning studies is ensuring timely availability of evaluation 
results. 

 
Whole-market vs. utility program perspectives. Evaluations traditionally focus, 

for obvious reasons, on assessing impacts from measures supported directly through 
utility programs. In contrast, EE potential and planning studies attempt to characterize the 
entire suite of measures commercially available in a given market. In this sense, the 
measure scope (and related data needs) of EE potential studies are by definition larger 
than for evaluation studies. However, we have argued that program implementers and 
evaluators are perfectly positioned to collect and process certain type of key data for non-
program measures that could prove to be enormously valuable to EE planning studies 
(e.g. measure saturation data from audit programs and measure adoption data from audit 
follow-ups/evaluations). Another key challenge, therefore, is strategically re-defining 
program implementation and evaluation activities and requirements beyond only 
measures directly supported by utility programs in a manner that does not hinder the 
effectiveness of program delivery or introduce significant additional implementation or 
evaluation costs.  

 
Balancing evaluation priorities with planning study needs. The whole-market 

vs. program-only challenge described above is actually one specific example of a more 
general set of challenges associated with expanding scope of evaluations to address 
planning study needs. This more general challenge is related to properly balancing 
evaluation objectives and priorities (e.g. measuring program impacts and efficacy) with 
the production of other data and information designed to feed EE planning studies. 
Exactly how much scope can be added to evaluation activities without jeopardizing the 
primary evaluation objectives?  

 
Roadmap for Going Forward 
 

Overcoming the challenges associated with actively linking program evaluations 
with EE planning studies in the ways described above is clearly a tall order and 
realistically cannot occur overnight. In this sense, the evaluation-planning integrations 
described above are more reasonably interpreted as longer term goals. Nonetheless, there 
are a host of initiatives that can be pursued in the near-term to better leverage current 
evaluation activities to improve planning studies in meaningful and important ways. 
Below, we present and describe four specific activities meant to provide a short-term road 
map for such initiatives. 
 
Coordinated phasing of evaluation and planning studies 
 

As described previously, program evaluation results often require 6-12 months, 
sometimes longer, to complete. Similarly, EE potential and planning studies also require 
6-12 months to complete. Given these long project timeframes, it is essential that EE 
planning studies be planned to start soon after, but not before, the latest round of program 
evaluation results become available. Since many of the outputs of evaluation studies serve 
as direct inputs to EE potential and planning studies, when these activities conducted 
concurrently, planning studies are forced to use older data. These types of “lost 
opportunities” can be systematically avoided by simply sequencing evaluation activities 
to feed planning studies in an organized, pre-determined, and timely manner. 



 
Testing experimental evaluation approaches 
 

Clearly, some of the most promising opportunities for leveraging evaluation-based 
data for use in EE planning studies will require current evaluation activities to expanded 
and/or redesigned. A reasonable and low-risk first step in pursuing such changes to 
current evaluation activities is to conduct smaller-scale tests of experimental evaluation 
approaches designed to incorporate the production of specific types of data needed for EE 
planning studies in addition to the data needed to estimate program impacts and efficacy. 
The results of these experimental evaluation approaches can then be used to derive first 
estimates of the additional time, costs, and operational issues associated with larger-scale 
expansion/redesign of evaluation activities and assess the quality of the additional 
planning-related data derived from these new activities and processes. 
 
Evaluating compliance with building codes and appliance standards  
 

In EE potential and planning studies, it is often taken as a given that compliance 
with codes and standards (or even labeling programs like the U.S. EPA’s ENERGY STAR) 
is at or near 100%. However, the limited number of compliance studies that have been 
conducted to date tend to suggest otherwise.2 Given the aggressive outlook for codes and 
standards in many parts of the world and the importance of interactions between codes 
and standards and utility programs, evaluating compliance with codes and standards will 
become increasingly important going forward, not only for utility program planning but 
also for load forecasting and resource planning. Such compliance evaluation activities 
need not be integrated with or affect utility program evaluation activities per se. In this 
sense, evaluation of codes and standards compliance levels represents a completely 
separate activity from utility program evaluation that need not cannibalize or otherwise 
create tensions for scarce utility program evaluation resources. 
 
Increasing the use of scenario analysis in EE potential and planning studies 

 
While all of the evaluation-planning linkages described outlined above would 

serve to significantly reduce the uncertainty associated with current forecasts of technical, 
economic, and achievable potential, such forecasts will always be, by nature, uncertain. In 
these types of longer-term planning studies where future relationships between many key 
variables are largely unknown and unpredictable, scenario analysis is a particularly 
useful, and under-utilized, tool. Well-designed scenario analyses provide bounded 
contextual frames for exploring the future from different perspectives that can facilitate 
organizational learning and generate critical insights into strategic decision making 
(Ghanadan & Koomey 2005). Most recent potential studies use scenario analysis to 
explore the potential impacts of increased incentive levels on customer adoption of EE 
measures by including a “base case” or “business-as-usual” funding scenario, where 
incentive levels and marketing budgets are set to align with current or baseline utility 
programs, and an “increased” or “advanced” funding scenario, where incentive levels and 
marketing budgets are increased significantly beyond business-as-usual levels. However, 
those scenario analyses are extremely narrow in scope and are typically not framed to 
examine potential outcomes associated with variations in assumed retail energy rates, 
                                                 
2 See, for example, Khawaja et al. 2007 and GAO 2010. 



avoided costs, technology learning, or changes in the level and structure of energy service 
demand, among other important variables that contribute to forecast uncertainty. Given 
energy efficiency’s central role in both resource procurement and climate change 
mitigation, it is critical to bound forecasts of EE potential under a wider variety of 
possible futures, rather than focusing solely on outcomes related to increasing incentives. 
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